Characterizing Time-Dependent Variance and Coefficient of Variation of SIR in D2D Connectivity

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10531)


Attempting to build a uniform theory of mobility-dependent characterization of wireless communications systems, in this paper, we address time-dependent analysis of the signal-to-interference ratio (SIR) in device-to-device (D2D) communications scenario. We first introduce a general kinetic-based mobility model capable of representing the movement process of users with a wide range of mobility characteristics including conventional, fractal and even non-stationary ones. We then derive the time-dependent evolution of mean, variance and coefficient of variation of SIR metric. We demonstrate that under non-stationary mobility behavior of communicating entities the SIR may surprisingly exhibit stationary behavior.


SIR Mobility model Time dependence Fokker-Plank equation 



The publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008) and by RFBR (research projects Nos. 15-07-03051, 17-07-00845).


  1. 1.
    Baccelli, F., Błaszczyszyn, B.: Stochastic geometry and wireless networks volume II applications. Found. Trends® Netw. 4(1–2), 1–312 (2010)zbMATHGoogle Scholar
  2. 2.
    Haenggi, M.: Stochastic Geometry for Wireless Networks. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  4. 4.
    Rappaport, T.S.: Wireless Communications: Principles and Practice, vol. 2. Prentice Hall PTR, Upper Saddle River (1996)zbMATHGoogle Scholar
  5. 5.
    Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the random waypoint mobility model. Wirel. Netw. 10(5), 555–567 (2004)CrossRefGoogle Scholar
  6. 6.
    Nain, P., et al.: Properties of random direction models. In: INFOCOM 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3. IEEE (2005)Google Scholar
  7. 7.
    Groenevelt, R., Altman, E., Nain, P.: relaying in mobile ad hoc networks: the brownian motion mobility model. Wirel. Netw. 12(5), 561–571 (2006)CrossRefGoogle Scholar
  8. 8.
    Rhee, I., et al.: On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. (TON) 19(3), 630–643 (2011)CrossRefGoogle Scholar
  9. 9.
    Orlov, Yu.N., Fedorov, S.L.: Modeling and statistical analysis of functionals defined on samples from a nonstationary time series, Preprints IPM. M.V. Keldysh. no. 43, 26 p. (2014)Google Scholar
  10. 10.
    Orlov, Yu.N.: Kinetic methods for investigating time-dependent time series, 276 p. MIPT, Moscow (2014)Google Scholar
  11. 11.
    Orlov, Yu.N., Fedorov, S.L.: Methods for numerical modeling of processes of a nonstationary random walk, 112 p. MIPT, Moscow (2016)Google Scholar
  12. 12.
    Orlov, Yu.N., Fedorov, S.L.: Modeling of distributions of functionals on the ensemble of trajectories of a nonstationary stochastic process, Pr. M.V. Keldysh, No. 101, 14 p. (2016)Google Scholar
  13. 13.
    Fedorov, S.L., Orlov, Yu.N., Samuylov, A., Moltchanov, D., Gaidamaka, Y., Samouylov, K., Shorgin, S.: Modeling of functional distribution for ensemble of trajectories, induced by the non-stationary stochastic process. In: proceedings of the 31th European Conference on Modelling and Simulation ECMS-2017, Budapest, Bulgaria, 23–26 May 2017, pp. 720–725 (2017)Google Scholar
  14. 14.
    Orlov, Yu.N., Zenyuk, D., Samuylov, A., Moltchanov, D., Andreev, S., Romashkova, O., Gaidamaka, Y., Samouylov, K.: Time-dependent SIR modeling for D2D communications in indoor deployments. In: proceedings of the 31th European Conference on Modelling and Simulation ECMS-2017, Budapest, Bulgaria, 23–26 May 2017, pp. 726–731 (2017)Google Scholar
  15. 15.
    Samuylov, D., Moltchanov, Y., Gaidamaka, V., Begishev, R., Kovalchukov, P., Abaev, S., Shorgin. SIR analysis in square-shaped indoor premises. In: proceedings of the 30th European Conference on Modelling and Simulation ECMS-2016, Regensburg, Germany May 31–June 03 2016, pp. 692–697 (2016). doi: 10.7148/2016-0692
  16. 16.
    Samuylov, A., Gaidamaka, Y., Moltchanov, D., Andreev, S., Koucheryavy, Y.: Random triangle: a baseline model for interference analysis in heterogeneous networks. IEEE Trans. Veh. Technol. 65(8), 6778–6782 (2016). doi: 10.1109/TVT.2015.2481795 CrossRefGoogle Scholar
  17. 17.
    Begishev, V., Kovalchukov, R., Samuylov, A., Ometov, A., Moltchanov, D., Gaidamaka, Y., Andreev, S.: An analytical approach to SINR estimation in adjacent rectangular cells. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 446–458. Springer, Cham (2015). doi: 10.1007/978-3-319-23126-6_39 CrossRefGoogle Scholar
  18. 18.
    Etezov, S., Gaidamaka, Y., Samuylov, K., Moltchanov, D., Samuylov, A., Andreev, S., Koucheryavy, E.: On distribution of SIR in dense D2D deployments. In: 22nd European Wireless conference (EW 2016), 18–20 May 2016, Oulu, Finland, pp. 333–337 (2016)Google Scholar
  19. 19.
    Samuylov, A., Ometov, A., Begishev, V., Kovalchukov, R., Moltchanov, D., Gaidamaka, Y., Samouylov, K., Andreev, S., Koucheryavy, Y.: Analytical performance estimation of network-assisted D2D communications in urban scenarios with rectangular cells. Trans. Emerg. Telecommun. Technol. pp. 1–14 (2015). doi: 10.1002/ett.2999

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Kinetic EquationsKeldysh Institute of Applied MathematicsMoscowRussia
  2. 2.Department of Electronics and Communications EngineeringTampere University of TechnologyTampereFinland
  3. 3.Department of Applied Probability and InformaticsPeoples’ Friendship University of Russia (RUDN University)MoscowRussia
  4. 4.Institute of Informatics ProblemsFederal Research Center “Computer Science, and Control” of the RASMoscowRussia

Personalised recommendations