Advertisement

Battery Monitoring Within Industry 4.0 Landscape: Solution as a Service (SaaS) for Industrial Power Unit Systems

  • Mathieu DevosEmail author
  • Pavel Masek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10531)

Abstract

The current globalization already faces the challenge of meeting the continuously growing demand for new consumer goods by simultaneously ensuring a sustainable evolution of human existence. The industrial value creation must be geared towards sustainability. In order to overcome this challenge, tightly coupling the production and its axiomatization processes is required in the paradigm of Industry 4.0. This technology bridges together a vast amount of new interconnected smart devices being mostly battery powered. Batteries are the heart of industrial motive power and electric energy storing solutions in the infrastructures of today. The charges related to the batteries are among the biggest cost (2.000–5.000 EUR per unit). Unfortunately, the batteries are not always treated properly and the badly managed ones lose their ability to store energy quickly. In this work, we present the developed modular Cloud solution utilizing Solution as a Service (SaaS) to monitor and manage industrial power unit systems. Modular approach is realized using simple miniature non-intrusive wireless sensors combined with cloud platform that provides the battery intelligence.

Keywords

Industry 4.0 Internet of Things Battery consumption Industrial motive battery IoT platform 

Notes

Acknowledgments

Research described in this paper was financed by the National Sustainability Program under grant LO1401. For the research, infrastructure of the SIX Center was used. This research was funded by the Technology Agency of Czech Republic project No. TF02000036.

We thank our colleagues from the Bamomas project for providing insight and expertise into the development of industrial motive sensors and batteries. The IoT devices and framework are developed by Bamomas. We acknowledge Pavel Marek and Dr. Raimo Vuopionperä for assistance with the numerical data analysis and unique insights in the life of industrial motive battery units.

References

  1. 1.
    Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: Proceedings of 49th Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937. IEEE (2016)Google Scholar
  2. 2.
    Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., Harnisch, M.: Industry 4.0: the future of productivity and growth in manufacturing industries. Boston Consulting Group, p. 14 (2015)Google Scholar
  3. 3.
    Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., Jozinović, P.: Industry 4.0 - potentials for creating smart products: empirical research results. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 16–27. Springer, Cham (2015). doi: 10.1007/978-3-319-19027-3_2 CrossRefGoogle Scholar
  4. 4.
    Stock, T., Seliger, G.: Opportunities of sustainable manufacturing in Industry 4.0. In: Proceedings of CIRP Conference, vol. 40, pp. 536–541 (2016)Google Scholar
  5. 5.
    Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., Vasilakos, A.V.: Software-defined industrial Internet of Things in the context of Industry 4.0. IEEE Sens. J. 16(20), 7373–7380 (2016)CrossRefGoogle Scholar
  6. 6.
    VNI Cisco: Global mobile data traffic forecast 2016–2021. White Paper (2017)Google Scholar
  7. 7.
    Stusek, M., Masek, P., Kovac, D., Ometov, A., Hosek, J., Kröpfl, F., Andreev, S.: Remote management of intelligent devices: using TR-069 protocol in IoT. In: Proceedings of 39th International Conference on Telecommunications and Signal Processing (TSP), pp. 74–78. IEEE (2016)Google Scholar
  8. 8.
    Ometov, A., Bezzateev, S., Kannisto, J., Harju, J., Andreev, S., Koucheryavy, Y.: Facilitating the delegation of use for private devices in the era of the internet of wearable things. IEEE Internet Things J. (2017)Google Scholar
  9. 9.
    Gerasimenko, M., Petrov, V., Galinina, O., Andreev, S., Koucheryavy, Y.: Energy and delay analysis of LTE-advanced RACH performance under MTC overload. In: Proceedings of IEEE Globecom Workshops (GC Workshops), pp. 1632–1637. IEEE (2012)Google Scholar
  10. 10.
    Seitz, C.W.: Industrial battery technologies and markets. IEEE Aerospace Electron. Syst. Mag. 9(5), 10–15 (1994)CrossRefGoogle Scholar
  11. 11.
    Renquist, J.V., Dickman, B., Bradley, T.H.: Economic comparison of fuel cell powered forklifts to battery powered forklifts. Int. J. Hydrogen Energy 37(17), 12054–12059 (2012)CrossRefGoogle Scholar
  12. 12.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)CrossRefGoogle Scholar
  13. 13.
    Gungor, V.C., Hancke, G.P.: Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Indus. Electron. 56(10), 4258–4265 (2009)CrossRefGoogle Scholar
  14. 14.
    Parwekar, P.: From Internet of Things towards cloud of things. In: Proceedings of 2nd International Conference on Computer and Communication Technology (ICCCT), pp. 329–333. IEEE (2011)Google Scholar
  15. 15.
    Shrouf, F., Ordieres, J., Miragliotta, G.: Smart factories in Industry 4.0: a review of the concept and of energy management approached in production based on the Internet of Things paradigm. In: Proceedings of International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 697–701. IEEE (2014)Google Scholar
  16. 16.
    Masek, P., Masek, J., Frantik, P., Fujdiak, R., Ometov, A., Hosek, J., Andreev, S., Mlynek, P., Misurec, J.: A harmonized perspective on transportation management in smart cities: the novel IoT-driven environment for road traffic modeling. Sensors 16(11), 1872 (2016)CrossRefGoogle Scholar
  17. 17.
    Fujdiak, R., Masek, P., Mlynek, P., Misurec, J., Olshannikova, E.: Using genetic algorithm for advanced municipal waste collection in smart city. In: Proceedings of 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–6. IEEE (2016)Google Scholar
  18. 18.
    Ceraolo, M.: New dynamical models of lead-acid batteries. IEEE Trans. Power Syst. 15(4), 1184–1190 (2000)CrossRefGoogle Scholar
  19. 19.
    Sharaf, H.: Method of testing the capacity of a lead-acid battery. US Patent 3,808,522 (1974)Google Scholar
  20. 20.
    Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)Google Scholar
  21. 21.
    Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int. J. Mech. Indus. Sci. Eng. 8(1), 37–44 (2014)Google Scholar
  22. 22.
    Grankin, M., Khavkina, E., Ometov, A.: Research of MEMS accelerometers features in mobile phone. In: Proceedings of the 12th Conference of Open Innovations Association FRUCT; Oulu, Finland, pp. 31–36 (2012)Google Scholar
  23. 23.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  24. 24.
    Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., Leung, K.: A survey on the IETF protocol suite for the Internet of Things: standards, challenges, and opportunities. IEEE Wireless Commun. 20(6), 91–98 (2013)CrossRefGoogle Scholar
  25. 25.
    Masek, P., Hosek, J., Zeman, K., Stusek, M., Kovac, D., Cika, P., Masek, J., Andreev, S., Kröpfl, F.: Implementation of true IoT vision: survey on enabling protocols and hands-on experience. Int. J. Distrib. Sens. Netw. (2016)Google Scholar
  26. 26.
    Bandyopadhyay, S., Sengupta, M., Maiti, S., Dutta, S.: A survey of middleware for Internet of Things. In: Özcan, A., Zizka, J., Nagamalai, D. (eds.) Recent Trends in Wireless and Mobile Networks, vol. 162, pp. 288–296. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21937-5_27
  27. 27.
    Bandyopadhyay, S., Sengupta, M., Maiti, S., Dutta, S.: Role of middleware for Internet of Things: a study. Int. J. Comput. Sci. Eng. Surv. 2(3), 94–105 (2011)CrossRefGoogle Scholar
  28. 28.
    Jeschke, S., Brecher, C., Song, H., Rawat, D.B.: Industrial Internet of Things. Springer, Cham (2017)CrossRefGoogle Scholar
  29. 29.
    Olshannikova, E., Ometov, A., Koucheryavy, Y., Olsson, T.: Visualizing big data. In: Big Data Technologies and Applications, pp. 101–131. Springer, Cham (2016). doi: 10.1007/978-3-319-44550-2_4
  30. 30.
    Olshannikova, E., Ometov, A., Koucheryavy, Y.: Towards big data visualization for augmented reality. In: Proceedings of 16th Conference on Business Informatics (CBI), vol. 2, pp. 33–37. IEEE (2014)Google Scholar
  31. 31.
    Olshannikova, E., Ometov, A., Koucheryavy, Y., Olsson, T.: Visualizing big data with augmented and virtual reality: challenges and research agenda. J. Big Data 2(1), 22 (2015)CrossRefGoogle Scholar
  32. 32.
    Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar, S.S., Wehrle, K.: Security challenges in the IP-based Internet of Things. Wireless Pers. Commun. 61(3), 527–542 (2011)CrossRefGoogle Scholar
  33. 33.
    Buxmann, P., Hess, T., Lehmann, S.: Software as a service. Wirtschaftsinformatik 50(6), 500–503 (2008)CrossRefGoogle Scholar
  34. 34.
    Dubey, A., Wagle, D.: Delivering software as a service. McKinsey Q. 6(2007), 2007 (2007)Google Scholar
  35. 35.
    Ometov, A.: Fairness characterization in contemporary IEEE 802.11 deployments with saturated traffic load. In: Proceedings of 15th Conference of Open Innovations Association FRUCT, pp. 99–104. IEEE (2014)Google Scholar
  36. 36.
    Condoluci, M., Militano, L., Orsino, A., Alonso-Zarate, J., Araniti, G.: LTE-direct vs. WiFi-direct for machine-type communications over LTE-A systems. In: Proceedings of 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 2298–2302. IEEE (2015)Google Scholar
  37. 37.
    Iera, A., Militano, L., Romeo, L.P., Scarcello, F.: Fair cost allocation in cellular-Bluetooth cooperation scenarios. IEEE Trans. Wireless Commun. 10(8), 2566–2576 (2011)CrossRefGoogle Scholar
  38. 38.
    Ometov, A.: Short-range communications within emerging wireless networks and architectures: a survey. In: Proceedings of 14th Conference of Open Innovations Association (FRUCT), pp. 83–89. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tampere University of TechnologyTampereFinland
  2. 2.Brno University of TechnologyBrnoCzech Republic
  3. 3.Peoples Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations