Skip to main content

Advanced Materials for Fiber Communication Systems

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2017, NsCC 2017, NEW2AN 2017)

Abstract

Fluoroaluminate glass is a material with a number of unique properties, but at present there are no studies that relate the chemical composition and luminescence properties. A number of fluoroaluminate glasses based on the composition (100 − x)·MgCaSrBaYAl2F14 − x·Ba (PO3)2, where x = (0.5–3.0) mol.% were synthesized by melting technique. The tendency of concentration dependence of hydroxyl absorption peaks reduction was explained by analysis of complex IR transmittance spectra and molecular refraction. The range of composition characterized by the absence of OH-absorption peaks around 3 µm was found. The concentration dependence of molecular refraction values on barium metaphosphate composition shows the inflection points in area at 1.0 mol.% and 2.0 mol.% of Ba(PO3)2. The analysis of the data obtained by Rayleigh and Mandel’shtam-Brillouin scattering (RMBS) spectroscopy determined the composition which has the minimum value of Landau-Placzek ratio (RL-P). Er3+ doped fluoroaluminate glasses were prepared by the same technique. The near infrared luminescence spectra of glasses corresponding to the 4I13/2 → 4I15/2 transition of Er3+ ions were observed. The mechanism of upconversion emissions Er3+ was discussed. Green and red emission bands at around 523, 546, and 660 nm wavelength were explained by two-photon process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markov, V.A., et al.: Adhesive As-S-Se-I immersion lenses for enhancing radiation characteristics of mid-IR LEDs operating in wide temperature range. Infrared Phys. Technol. 78, 167–172 (2016)

    Article  Google Scholar 

  2. Lee, J.H., et al.: Thermal properties of ternary Ge–Sb–Se chalcogenide glass for use in molded lens applications. J. Non-Cryst. Solids 431, 41–46 (2016)

    Article  Google Scholar 

  3. Gibson, D., et al.: Layered chalcogenide glass structures for IR lenses. In: Proceedings SPIE 9070, Infrared Technology and Applications XL, Proceedings SPIE, vol. 9070, p. 90702I-5 (2014)

    Google Scholar 

  4. Simondi-Teisseire, B., Viana, B., Vivien, D., Lejus, A.M.: Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb: Er:Ca2Al2SiO7. Opt. Mater. 6, 267–274 (1996)

    Article  Google Scholar 

  5. León-Luis, S.F., et al.: Temperature sensorbased on the Er3+ green upconverted emission in a fluorotellurite glass. Sens. Actuators B 158, 208–213 (2011)

    Article  Google Scholar 

  6. Cai, Z.P., Xu, H.Y.: Point temperature sensor based on green upconversion emission in an Er:ZBLALiP microsphere. Sens. Actuators A: Phys. 108, 187 (2003)

    Article  Google Scholar 

  7. Manzani, D., et al.: A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass. Sci. Rep. 7, 41596 (2017)

    Article  Google Scholar 

  8. Guery, J., et al.: Corrosion of uranium IV fluoride glasses in aqueous solutions. Phys. Chem. Glasses 29, 30–36 (1988)

    Google Scholar 

  9. Fujiura, K., Hoshino, K., Kanamori, T., Nishida, Y., Ohishi, Y., Sudo, S.: Technical Digest of Optical Amplifiers and Their Applications, Davos, Switzerland, 15–17 June 1995. Optical Society of America, Washington DC (1995)

    Google Scholar 

  10. Bouaggad, A., Fonteneau, G.: J. Lucas Mater. Res. Bull. 22, 685 (1987)

    Article  Google Scholar 

  11. West, G.F., Hofle, W.: Non-Cryst. Solids 213–214, 189 (1997)

    Article  Google Scholar 

  12. Dmitryuk, A.V.: Tagil’tseva, N.O., Khalilev, V.D.: Terbium doped fluoroaluminate glasses. Glass Ceram. 54(3–4), 69–72 (1997)

    Article  Google Scholar 

  13. Bocharova, T.V., Karapetyan, G.O.: Tagil’tseva, N.O., Khalilev, V.D.: Investigation of the effect of barium metaphosphate additives on the structure of fluoroaluminate glasses by optical and EPR spectroscopy. Glass Phys. Chem. 27(1), 48–53 (2001)

    Article  Google Scholar 

  14. Bocharova, T.V., Karapetyan, G.O.: Tagil’tseva, N.O., Khalilev, V.D.: Optical properties of gamma irradiated Ba(PO3)2 containing fluoroaluminate glasses. Inorg. Mater. 37(8), 857–862 (2001)

    Article  Google Scholar 

  15. Sirotkin, S.A., et al.: Spectroscopic properties of the glass of fluoroaluminate systems with small additives of barium metaphosphate activated with the ions of rare-earth elements. Glass Phys. Chem. 41(3), 265–271 (2015)

    Article  Google Scholar 

  16. Anan’ev, A.V., et al.: Origin of rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2. J. Non-Cryst. Solids 354(26), 3049–3058 (2008)

    Article  Google Scholar 

  17. Maksimov, L., et al.: Inhomogeneous structure of inorganic glasses studied by Rayleigh, Mandel’shtam-Brillouin, Raman scattering spectroscopy, and acoustic methods. In: IOP Conference Series: Materials Science and Engineering, vol. 25, p. 012010 (2011)

    Google Scholar 

  18. Yan, Y., Faber, A.J., Wall, H.: J. Non-Cryst. Solids 181, 283 (1995)

    Article  Google Scholar 

  19. Dai, S., et al.: Concentration quenching in erbium-doped tellurite glasses. J. Lumin. 117, 39 (2006)

    Article  Google Scholar 

  20. Yan, D., et al.: Investigation of the mechanism of upconversion luminescence in Er3+/Yb3+ co-doped Bi2Ti2O7 inverse opal. Chin. Opt. Lett. 11, 041602 (2013)

    Article  Google Scholar 

  21. Anan’ev, A., et al.: Multicomponent glasses for electrooptical fibers. J. Non-Cryst. Solids 351(12–13), 1046–1053 (2005)

    Article  Google Scholar 

  22. Yan, Y.C., Faber, A.J., de Waal, H., Kik, P.G., Polman, A.: Appl. Phys. Lett. 71, 2922 (1997)

    Article  Google Scholar 

  23. Hamzaoui, M., Soltani, M.T., Baazouzi, M., Tioua, B., Ivanova, Z.G., Lebullenger, R., Poulain, M., Zavadil, J.: Optical properties of erbium doped antimony based glasses: promising visible and infrared amplifiers materials. Phys. Status Solidi B 249(11), 2213–2221 (2012)

    Article  Google Scholar 

  24. Linganna, K., Rathaiah, M., Vijaya, N., Basavapoornima, C., Jayasankar, C.K., Ju, S., Han, W.-T., Venkatramu, V.: 1.53 μm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses. Ceram. Int. 41(4), 5765–5771 (2015)

    Article  Google Scholar 

  25. Moorthy, L.R., Jayasimhadri, M., Saleem, S.A., Murthy, D.V.R.: Optical properties of Er3+-doped alkali fluorophosphate glasses. J. Non-Cryst. Solids 353(13–15), 1392–1396 (2007)

    Article  Google Scholar 

  26. Ronchin, S., et al.: Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties. J. Non-Cryst. Solids 284(1–3), 243–248 (2001)

    Article  Google Scholar 

  27. Zou, X., Izumitani, T.: Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses. J. Non-Cryst. Solids 162(1–2), 68 (1993)

    Article  Google Scholar 

  28. Nadort, A., Zhao, J., Goldys, E.M.: Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8(27), 13099–13130 (2016)

    Article  Google Scholar 

  29. Lo Savio, R., et al.: J. Appl. Phys. 106, 043512 (2009)

    Article  Google Scholar 

  30. Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104(1), 139–173 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to V. A. Aseev for the luminescence measurements and to A.V. Anan’ev for RMBS measurements of the studied samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Klinkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Klinkov, V.A., Semencha, A.V., Tsimerman, E.A. (2017). Advanced Materials for Fiber Communication Systems. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NsCC NEW2AN 2017 2017 2017. Lecture Notes in Computer Science(), vol 10531. Springer, Cham. https://doi.org/10.1007/978-3-319-67380-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67380-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67379-0

  • Online ISBN: 978-3-319-67380-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics