High-Throughput Robotic Phenotyping of Energy Sorghum Crops

Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 5)


Plant phenotyping is a time consuming, labour intensive, error prone process of measuring the physical properties of plants. We present a scalable robotic system which employs computer vision and machine learning to phenotype plants rapidly. It maintains high throughput making multiple phenotyping measurements during the plant lifecycle in plots containing thousands of plants. Our novel approach allows scanning of plants inside the plant canopy in addition to the top and bottom section of the plants. Here we present our design decisions, implementation challenges and field observations.


Error-prone Process Sensor Pod Boom Sensor Leaf Angle Measured Phenotypic Estimates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Araus, J.L., Cairns, J.E.: Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19(1), 52–61 (2014)Google Scholar
  2. 2.
    Fahlgren, N., Gehan, M.A., Baxter, I.: Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24, 93–99 (2015)CrossRefGoogle Scholar
  3. 3.
    Mullet, J., Morishige, D., McCormick, R., Truong, S., Hilley, J., McKinley, B., Anderson, R., Olson, S.N., Rooney, W.: Energy sorghum-a genetic model for the design of C4 grass bioenergy crops. J. Exp. Bot. 65, 3479–3489 (2014)CrossRefGoogle Scholar
  4. 4.
    Vermerris, W.: Survey of genomics approaches to improve bioenergy traits in maize, Sorghum and sugarcane. J. Integr. Plant Biol. 53, 105–119 (2011)CrossRefGoogle Scholar
  5. 5.
    Li, L., Zhang, Q., Huang, D.: A review of imaging techniques for plant phenotyping. Sensors 14(11), 20078–20111 (2014)CrossRefGoogle Scholar
  6. 6.
    Ribera, J., et al.: Estimating Phenotypic Traits From UAV Based RGB ImageryGoogle Scholar
  7. 7.
    Bangert, W., et al.: Field-robot-based agriculture: remotefarming and bonirob-apps. VDI-Berichte 2193, 439–446 (2013)Google Scholar
  8. 8.
    Virlet, N., et al.: Field scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biol. 44(1), 143–153 (2017)Google Scholar
  9. 9.
    Weiss, U., Biber, P.: Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot. Auton. Syst. 59(5), 265–273 (2011)CrossRefGoogle Scholar
  10. 10.
    Slaughter, D.C., Giles, D.K., Downey, D.: Autonomous robotic weed control systems: a review. Comput. Electron. Agric. 61(1), 63–78 (2008)CrossRefGoogle Scholar
  11. 11.
    Dey, D., Mummert, L., Sukthankar, R.: Classification of plant structures from uncalibrated image sequences. In: 2012 IEEE Workshop on Applications of Computer Vision (WACV). IEEE, APA (2012)Google Scholar
  12. 12.
    Mccormick, R.F., Truong, S.K., Mullet, J.E.: 3d sorghum recon- structions from depth images identify qtl regulating shoot architecture. Plant Physiol, 00948 (2016)Google Scholar
  13. 13.
    Lehnert, C., et al.: Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot. Autom. Lett. 2(2), 872–879 (2017)Google Scholar
  14. 14.
    Chaivivatrakul, S., et al.: Automatic morphological trait characterization for corn plants via 3D holographic reconstruction. Comput. Electronics in Agric. 109, 109–123 (2014)Google Scholar
  15. 15.
    Wu, C.: Towards linear-time incremental structure from motion. In: Proceedings of—2013 International Conference 3D Vision, 3DV 2013, pp. 127–134 (2013)Google Scholar
  16. 16.
    Fuhrmann, S., Langguth, F., Goesele, M.: MVE—a multi-view reconstruction environment. In: Eurographics Workshops on Graphics and Cultural Heritage (2014)Google Scholar
  17. 17.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)Google Scholar
  18. 18.
    Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 14(2), 239–256 (1992)CrossRefGoogle Scholar
  19. 19.
    Sodhi, P., Vijayarangan, S., Wettergreen, D.: In-field segmentation and identification of plant structures using 3D imaging. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2017)Google Scholar
  20. 20.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09. IEEE (2009)Google Scholar
  21. 21.
    Koltun, Vladlen: Efficient inference in fully connected crfs with gaussian edge potentials. Adv. Neural Inf. Process. Syst. 2(3), 4 (2011)Google Scholar
  22. 22.
    Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for pointcloud shape detection. In: Computer Graphics Forum, vol. 26, no. 2. Blackwell Publishing Ltd (2007)Google Scholar
  23. 23.
    Rusu, R.B., Cousins, S.: 3d is here: point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations