Advertisement

Matrices in Improvement of Systems of Artificial Intelligence and Education of Specialists

  • Nikolay A. Balonin
  • Sergey V. Petoukhov
  • Mikhail B. Sergeev
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 658)

Abstract

This article is devoted to a significant role of matrices in digital signal processing, systems of artificial intelligence and mathematical natural sciences in the whole. The study of the world of matrices is going on intensively all over the world and constantly brings useful and unexpected results. Some of these results are presented in this paper. Special attention is paid to Hadamard matrices and some their modifications and extensions, which are important for developing systems of artificial intelligence and studying the genetic code. Training courses for specialists in many fields of science should be constantly updated with new knowledge about matrices and their practical applications.

Keywords

Hadamard matrices Mersenne matrices circulant Fermat orders signal processing bioinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petoukhov S. V. The Genetic Code, Algebra of Projection Operators and Problems of Inherited Biological Ensembles. http://arxiv.org/abs/1307.7882, 8th version of the article from 3 May 2017, pp. 1–93.
  2. 2.
    Petoukhov S.V., He M. Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications. IGI Global: Hershey, USA, 2010.Google Scholar
  3. 3.
    Balonin N. A., Seberry J. Remarks on Extremal and Maximum Determinant Matrices with Real Entries ≤ 1. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2014. No. 5(71), pp. 2–4. (In Russian).Google Scholar
  4. 4.
    Balonin N. A., Sergeev M. B. Mersenne and Hadamard Matrices. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2016, no. 1(80), pp. 92–94. (In Russian). doi: 10.15217/issn1684-8853.2016.1.2
  5. 5.
    Osborn J. H. The Hadamard Maximal Determinant Problem, Honours thesis. University of Melbourne, 2002, 144 P. Available at: http://maths-people.anu.edu.au/~osborn/publications/pubsall.html (accessed: 15 May 2017).
  6. 6.
    Shanmukhappa A. Angadi, Sanjeevakumar M. Hatture,”Biometric Person Identification System: A Multimodal Approach Employing Spectral Graph Characteristics of Hand Geometry and Palmprint”, International Journal of Intelligent Systems and Applications (IJISA), Vol.8, No.3, pp.48-58, 2016. DOI:  10.5815/ijisa.2016.03.06.
  7. 7.
    Sudip Kumar Sahana, Mohammad AL-Fayoumi, Prabhat Kumar Mahanti,”Application of Modified Ant Colony Optimization (MACO) for Multicast Routing Problem”, International Journal of Intelligent Systems and Applications(IJISA), Vol.8, No.4, pp.43-48, 2016. DOI:  10.5815/ijisa.2016.04.05.
  8. 8.
    Siddu P. Algur, Prashant Bhat,”Web Video Object Mining: A Novel Approach for Knowledge Discovery”, International Journal of Intelligent Systems and Applications(IJISA), Vol.8, No.4, pp.67-75, 2016. DOI:  10.5815/ijisa.2016.04.08.
  9. 9.
    Hadamard, J. Resolution d’une Question Relative Aux Determinants. Bulletin des Sciences Mathematiques, 1893, vol. 17, pp. 240–246.Google Scholar
  10. 10.
    Ehlich H. Determinantenabschätzungen für Binäre Matrizen. Math. Z., 1964, vol. 83, pp. 123–132.Google Scholar
  11. 11.
    Wojtas W. On Hadamard’s Inequality for the Determinants of Order Non-Divisible by 4 Colloq. Math., 1964, no. 12, pp. 73–83.Google Scholar
  12. 12.
    Hall, Marshall A Survey of Difference Sets, Proc. Amer. Math. Soc. 1956, no. 7, pp. 975-986.Google Scholar
  13. 13.
    Balonin N. A., Seberry, Jennifer, Sergeev M. B. Three level Cretan Matrices of Order 37. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], no. 2(74), 2015, pp. 2–3 (in Russian) doi: 10.15217/issn1684-8853.2015.2.2.
  14. 14.
    Balonin N. A., Sergeev M. B. Expansion of the Orthogonal Basis in Video Compression. Smart Digital Futures 2014. Intelligent Interactive Multimedia Systems and Services (IIMSC-2014), IOS Press, 2014. pp. 468–474.Google Scholar
  15. 15.
    Barba G. Intorno al teorema di Hadamard sui Determinanti a Valore Massimo, Giorn. Mat. Battaglini, 1933, no. 71, pp. 70–86.Google Scholar
  16. 16.
    Balonin N. A., Djokovic D. Z. Symmetry of Two Circulant Hadamard Matrices and Periodic Golay Pairs. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2015, no. 3(76), pp. 2–16, doi: 10.15217/issn1684-8853.2015.3.16 (in Russian).
  17. 17.
    Balonin N. A., Djokovic D. Z. Negaperiodic Golay Pairs and Hadamard Matrices. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2015, no. 5(78), pp. 2–17 (in Russian), doi: 10.15217/issn1684-8853.2015.5.2.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nikolay A. Balonin
    • 1
  • Sergey V. Petoukhov
    • 2
  • Mikhail B. Sergeev
    • 1
  1. 1.Saint Petersburg State University of Aerospace InstrumentationSt. PetersburgRussian Federation
  2. 2.Mechanical Engineering Research Institute of the Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations