Matrix Representations of Genetic Codes and Human Emotions

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 658)

Abstract

The genetic code is encoded in combinations of the four nucleotides (A, C, G, T) found in DNA and then RNA. DNA defines the structure and function of an organism and contains the complete genetic information. Using the genetic code of the DNA, according to central dogma of molecular biology proteins are formed. In recent years, it has been suggested that our emotions are molecules. The peptides connect to human emotions that influence every move, function and thought. The peptides as information substances bring the messages to all our body cells. In this paper, we present recent advances in genetic code-based matrices generated by RNA bases (A, C, G, U) and then draw a parallel of matrices of emotions generated by primary emotions (Sadness, Happiness, Anger, Fear) = (S, H, A, F) along with facial expressions of markers. This parallel shows a similarity connection between universal genetic codes and the universality of facial expressions for emotions. We further show that the frequency of 64 compound emotions/facial expression markers follow a law of normal distribution.

Keywords

Genetic code genetic matrix human emotions facial expressions matrix of human emotions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Du, S. C., Tao, Y. and Martinez, A. M. (2014), Compound facial expressions of emotion, Proc Natl Acad Sci U S A. 2014 Apr 15; 111(15): E1454–E1462.Google Scholar
  2. 2.
    Frijda, N. H. (1986), The emotions. New York: Cambridge University Press.Google Scholar
  3. 3.
    Gaufo GO, Wu S, Capecchi MR. (2004), Contribution of Hox genes to the diversity of the hindbrain sensory system. Development (Cambridge, England). 131: 1259-66. PMID 14960494 DOI:  10.1242/dev.01029.
  4. 4.
    Hamann, S. (2012), Mapping Discrete and Dimensional Emotions onto the Brain: Controversies and Consensus, Trends Cogn Sci 16 (9), 458-466.Google Scholar
  5. 5.
    He, M., (2004), Genetic Code, Attributive Mappings and Stochastic Matrices, Bulletin of Mathematical Biology, Vol. 66/5, pp 965-973.Google Scholar
  6. 6.
    He, M. (2003), Double Helical Sequences and Doubly Stochastic Matrices, Symmetry: Culture and Science: Symmetries in Genetic Information International Symmetry Foundation, Budapest, 2004), pp. 307-330.Google Scholar
  7. 7.
    He, M., Petoukhov, S.V., (2011), Mathematics of Bioinformatics: Theory, Practice, and Applications, John Wiley & Sons.Google Scholar
  8. 8.
    He, M, Petoukhov S. V. and Ricci P. E., (2004), Genetic code, Hamming distance and stochastic matrices, Bulletin of Math. Biology, Vol 66, pp 1405-1421.Google Scholar
  9. 9.
    Izard, C. E. (1977), Human emotions. New York: Plenum Press.Google Scholar
  10. 10.
    Jack, R.E., Garrod, O.G., Schyns, P.G. (2014), Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time, Curr Biol. 2014, Jan 20;24(2):187-92. doi:  10.1016/j.cub.2013.11.064.
  11. 11.
    James, W. (1884), What is an emotion? Mind, 9, 188-205.Google Scholar
  12. 12.
    Jimenéz-Montaño, M. A., Mora-Basáñez, C. R., Pöschel, T. (1994), On the Hypercube Structure of the Genetic Code, In Hwa A. Lim und Charles A. Cantor, editors, Proc. 3. Int. Conf. On Bioinformatics and Genome Research, page 445, (World Scientific).Google Scholar
  13. 13.
    Knight, R.D., Freeland, S. J., Landweber, L. F. (1999), Selection, history and chemistry: the three faces of the genetic code. TIBS 24, pp 241-247.Google Scholar
  14. 14.
    N Murali Krishna, J Sirisha Devi, Srinivas Yarramalle,”A Novel Approach for Effective Emotion Recognition Using Double Truncated Gaussian Mixture Model and EEG”, International Journal of Intelligent Systems and Applications (IJISA), Vol.9, No.6, pp.33-42, 2017. DOI:  10.5815/ijisa.2017.06.04
  15. 15.
    Okbay, A., Baselmans, B. M. L, et al. (2016), Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses, Nature Genetics 48, 624–633, doi: 10.1038/ng.3552
  16. 16.
    Pert, C.B. (1999), Molecules of Emotion: The Science Behind Mind-Body Medicine, Simon & Schuster, New York.Google Scholar
  17. 17.
    Petoukhov, S.V., (2001), The Bi-periodic Table of Genetic Code and Number of Protons, Moscow, 258 (in Russian).Google Scholar
  18. 18.
    Petoukhov, S.V., (1999), Genetic Code and the Ancient Chinese Book of Changes, Symmetry: Culture and Science, Vol. 10, Nos. 3-4, p. 211-226.Google Scholar
  19. 19.
    Petoukhov, S. V. (2002), Binary sub-alphabets of genetic language and problem of unification bases of biological languages, IX International Conference Mathematics, computer, education, Russia, Dubna, January 28-31, 191 (in Russian).Google Scholar
  20. 20.
    Petoukhov S.V., Petukhova E.S. (2016), Symmetries in genetic systems and the concept of geno-logical coding. - Information, 2017, 8(1), 2; doi: 10.3390/info8010002.
  21. 21.
    Piątkowska E., Martyna J. (2012) Computer Recognition of Facial Expressions of Emotion. In: Perner P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science, vol. 7376. Springer, Berlin, Heidelberg.Google Scholar
  22. 22.
    Reuter, M., Weber, B., Fiebach, C.J., Elger, C., Montag, C. (2009), The biological basis of anger: associations with the gene coding for DARPP-32 (PPP1R1B) and with amygdala volume, Behav Brain Res. Sep 14;202(2):179-83.Google Scholar
  23. 23.
    Dilbag Singh,”Human Emotion Recognition System”, IJIGSP, vol.4, no.8, pp.50-56, 2012. DOI:  10.5815/ijigsp.2012.08.07
  24. 24.
    Štambuk, N. (2000), Universal metric properties of the genetic code, Croatica Chemica ACTA, 73 (4) 1123-1139.Google Scholar
  25. 25.
    Steimer, T. (2002). The Biology of fear- and anxiety-related behaviors, Dialogues Clinical Neuriscience. 4:231-249Google Scholar
  26. 26.
    Stewart I., (1999), Life’s Other Secret: The New Mathematics of the Living World, Penguin.Google Scholar
  27. 27.
    M. Sreeshakthy, J. Preethi, A. Dhilipan,”A Survey On Emotion Classification From Eeg Signal Using Various Techniques and Performance Analysis”, International Journal of Information Technology and Computer Science(IJITCS), Vol.8, No.12, pp.19-26, 2016. DOI:  10.5815/ijitcs.2016.12.03
  28. 28.
    Swanson, R. (1984), A Unifying Concept for the Amino Acid Code, Bulletin of Mathematical Biology, Vol. 46, No. 2, pp. 187-203.Google Scholar
  29. 29.
    Yang, C. M. (2003), The Naturally Designed Spherical Symmetry in the Genetic Code, http://arxiv.org/abs/q-bio.BM/0309014.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Nova Southeastern UniversityFt. LauderdaleUSA
  2. 2.Central China Normal UniversityWuhanChina

Personalised recommendations