Fundamentals of Intelligent System for Estimation of Dynamical Interaction of Space Debris with Spacecrafts

  • B. V. Paliukh
  • V. V. Meshkov
  • V. K. Kemaykin
  • Yu. G. Kozlova
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 658)


The principles underlying building of intelligent information systems for estimation of dynamical interaction of space debris and spacecraft is shown. It describes the knowledge database model based on these principles. This base represents the synthesis of theoretical and practical information in the field of estimating of the high-speed interaction of objects. The article reports practical results of base data preparation based on the findings of research.


Intelligent information system Space debris Knowledge database Fuzzy systems Damage risk assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weijie Wang,Huairong Shen,Yiyong Li,”Study on the Impact Breakup Model of the Space Target Based on the Thin Plat”, International Journal of Information Technology and Computer Science(IJITCS), vol.3, no.2, pp.46-52, 2011. DOI:  10.5815/ijitcs.2011.02.07
  2. 2.
    Protection manual. IADC-04-03.Version 5.0.Inter-agency space debris coordination committee.Prepared by the IADC WG3 members. October, 2012
  3. 3.
    Rotshteyn, A.P. (1999) Intellectual technologies of identification: fuzzy logic, genetic algorithms, neural networks. Universum. Vinnitsa.Google Scholar
  4. 4.
    Shushura A.N., Tarasova I.A. (2012) Way of a task of multidimensional functions of accessory of terms of linguistic variables in Information technologies and computer engineering, No 1, p. 39.Google Scholar
  5. 5.
    Mironov V.V., Tolkach M.A. (2016) The ballistic limit equations for optimization of system of protection of spacecrafts against mikrometeoroid and space debris in Space equipment and technologies. No 3(14). p.26.Google Scholar
  6. 6.
    Mityushkin Yu. I., Mokin B. I., Rotshteyn A. P. (2002) SoftComputing: identification of regularities indistinct knowledge bases. Universum. Vinnitsa.Google Scholar
  7. 7.
    Yongyuan Li,Yi Jiang,Chunping Huang,”Shape Design of Lifting body Based on Genetic Algorithm”, International Journal of Information Engineering and Electronic Business(IJIEEB), vol.2, no.1, pp.37-43, 2010. DOI:  10.5815/ijieeb.2010.01.06
  8. 8.
    Kurenkov V.I., Lukashev L.G., Yumashev L.P. (2004) Assessment of meteoric and technogenic danger of flight of the spacecraft. SGAU. Samara.Google Scholar
  9. 9.
    Shtovba S.D. (2007) Control of fuzzy model on the training selection with an fuzzy exit in Cybernetics and the system analysis, No. 3, pp. 26-32.Google Scholar
  10. 10.
    Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko, Vitalii M. Tkachov,”Fuzzy Clustering Data Arrays with Omitted Observations”, International Journal of Intelligent Systems and Applications(IJISA), Vol.9, No.6, pp.24-32, 2017. DOI:  10.5815/ijisa.2017.06.03
  11. 11.
    Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko, Daria S. Kopaliani,”An Extended Neo-Fuzzy Neuron and its Adaptive Learning Algorithm”, International Journal of Intelligent Systems and Applications(IJISA), vol.7, no.2, pp.21-26, 2015. DOI:  10.5815/ijisa.2015.02.03
  12. 12.
    Novikov L.S. “Impact of firm particles of a natural and artificial origin on spacecrafts”. Moscow. 2009.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Tver State Technical UniversityTverRussia

Personalised recommendations