Exploring Structure and Evolution of the Genetic Code with the Software Tool GCAT

  • E. Fimmel
  • M. Gumbel
  • L. Strüngmann
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 658)


The genetic code can be seen as the major key to biological self-organisation. In fact, all living organisms regardless of whether they are plants, bacteria or mammals have the same molecular bases: Adenine, cytosine, guanine, and thymine. Unidimensional sequences of these bases contain the genetic information for the synthesis of proteins in all forms of life. Thus, one of the most fascinating questions is to explain why evolution has produced the current genetic code and why it exists in its present form.

Motivated by these fundamental questions, a new software tool – Genetic Code Analysis Toolkit (GCAT) – was developed which can be used to investigate properties of the genetic code in order to develop hypotheses about its origin and evolution. The main focus of the tool has been put on the graphical visualisation of the data.

In the present paper we will describe in short the tool GCAT and give a couple of applications presenting new results on circular codes and the structure of some ancient codes.


Circular Codes Genetic Information Binary Dichotomic Algorithms GCAT Genetic Code Analysis Toolkit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mohammed Abo-Zahhad,Sabah M. Ahmed,Shimaa A. Abd-Elrahman,”Genomic Analysis and Classification of Exon and Intron Sequences Using DNA Numerical Mapping Techniques”, International Journal of Information Technology and Computer Science(IJITCS), vol.4, no.8, pp.22-36, 2012. DOI:  10.5815/ijitcs.2012.08.03
  2. 2.
    Arqu`es D. G. and Michel C. J.: A complementary circular code in the protein coding genes, J.Theor. Biol., 182, 45-58, 1996.Google Scholar
  3. 3.
    Crick F., Griffith J. S., and Orgel L. E.: Codes without commas, Proceedings of the National Academy of Sciences of the United States of America, 43, 1957, 416-421.Google Scholar
  4. 4.
    Fimmel E., Giannerini S., Gonzalez D., Strüngmann L.: Circular codes, symmetries and transformations J. of Mathematical Biology, (July 2014), 70(7):1623-44.Google Scholar
  5. 5.
    Fimmel E., Michel C.J., and Strüngmann L.: n-nucleotide circular codes in graph theory, Phil Trans.A, volume 374: 20150058, 2016.Google Scholar
  6. 6.
    Fimmel E., Michel C.J., and Strüngmann L.: Strong comma-free codes, submitted for publication.Google Scholar
  7. 7.
    Fimmel E., Michel C.J., and Strüngmann L.: Self-complementarity in genetic codes, in preparation.Google Scholar
  8. 8.
    Fimmel, E.; Strüngmann, L.: On the hierarchy of trinucleotide n-circular codes and their corresponding amino acids, J. Theor Biol., 2015, 364, 113-120.Google Scholar
  9. 9.
    Fimmel E., Strüngmann L.: Codon Distribution in Error-Detecting Cir-cular Codes, Life 2016, 6(1), 14; doi:10.3390/life6010014.Google Scholar
  10. 10.
    Fimmel, E., Danielli, A., Strüngmann, L.: On dichotomic classes and bi-jections of the genetic code, J. Theor. Biol. 336 (0), 2013, 221–230.Google Scholar
  11. 11.
    Gonzalez D.L., Giannerini S., Rosa R.: Strong short-range correlations and dichotomic codon classes in coding DNA sequences Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. Nov 2008. 78 (5 Pt 1), 051918.Google Scholar
  12. 12.
    Syed Mahamud Hossein, S.Roy,”A Compression & Encryption Algorithm on DNA Sequences Using Dynamic Look up Table and Modified Huffman Techniques”, International Journal of Information Technology and Computer Science(IJITCS), vol.5, no.10, pp.39-61, 2013. DOI:  10.5815/ijitcs.2013.10.05
  13. 13.
    Gumbel M., Fimmel E., Danielli A., Strüngmann L.: On Models of the Genetic Code generated by Binary Dichotomic Algorithms. Biosystems 128 (2015) 9-18.
  14. 14.
    Huber W., Carey V. J., Gentleman R., Anders S., Carlson M., Carvalho B. S., Bravo H. C., Davis S., Gatto L., Girke T., Gottardo R., Hahne F., Hansen K. D., Irizarry R. A., Lawrence M., Love M. I., MacDonald J., ObenchainV., Ole? A. K., Pagès H., Reyes A., Shannon P., SmythG. K., Tenenbaum D., Waldron L., Morgan M.: Orchestrating high-throughput genomic analysis with bioconductor, Nat Methods 12 (2) (2015) 115–121. doi: 10.1038/nmeth.3252. E. Fimmel et al.
  15. 15.
    J.K. Meher, M.R. Panigrahi, G.N. Dash, P.K. Meher,”Wavelet Based Lossless DNA Sequence Compression for Faster Detection of Eukaryotic Protein Coding Regions”, International Journal of Image, Graphics and Signal Processing(IJIGSP), vol.4, no.7, pp.47-53, 2012.  10.5815/ijigsp.2012.07.05
  16. 16.
    Jiménez-Montaño, M. A.: Protein evolution drives the evolution of the genetic code and vice versa. Biosystems, (1999), 4(1-2):47–64.Google Scholar
  17. 17.
    Prlic A., Yates A., Bliven S. E., Rose P. W., Jacobsen J., Troshin P. V., Chapman M., Gao J., Koh C. H., Foisy S., Holland R., Rimsa G., Heuer M. L., Brandstätter-Müller H., Bourne P. E., Willis S.: Biojava: an open-source framework for bioinformatics in 2012, Bioinformatics 28 (20) (2012) 2693–2695. doi: 10.1093/bioinformatics/bts494
  18. 18.
    R Development Core Team, R: A Language and Environment for Statisti-cal Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0 (2008). URL
  19. 19.
    Rumer Yu.B.: Translation of ?Systematization of Codons in the Genetic Code [I-III]? by Yu. B. Rumer (1966-1968). Phil. Trans. R. Soc. A, 2016, 374: 20150446Google Scholar
  20. 20.
    The 1000 Genomes Project Consortium: A global reference for human genetic variation. Nature, 2015, 526:7571, 68–74,

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for Mathematical BiologyMannheim University of Applied SciencesMannheimGermany

Personalised recommendations