Skip to main content
  • 2337 Accesses

Abstract

Stochastic methods are a crucial tool for the analysis of multivariate time series in contemporary climate and environmental research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • A.G. Barnston, C.F. Ropelewski, Prediction of ENSO episodes using canonical correlation analysis. J. Clim. 5, 1316–1345 (1992)

    Article  Google Scholar 

  • T.A. Buishand, Some methods for testing the homogeneity of rainfall records. J. Hydrol. 58, 11–27 (1982)

    Article  Google Scholar 

  • M. Casas-Prat, X.L. Wang, J.P. Sierra, A physical-based statistical method for modeling ocean wave heights. Ocean Model. 73, 59–75 (2014)

    Article  Google Scholar 

  • M. Ceschia, R. Garfagnini, A. Lavenia, E. Toppano, An analysis by ARMA stochastic processes of the daily average temperatures collected during, in Udine and Lignano Sabbiadoro. Il Nuovo Cimento C 9(1986), 859–884 (1984)

    Google Scholar 

  • K. Cheng, J. Hou, Y. Wu, J. Liou, Assessing the impact of climate change on annual typhoon rainfall- a stochastic simulation approach. Paddy Water Environ. 7, 333–340 (2009)

    Article  Google Scholar 

  • S. Cherry, Singular value analysis and canonical correlation analysis. J. Clim. 9, 2003–2009 (1996)

    Article  Google Scholar 

  • U. Cubasch, B.D. Santer, A. Hellbach, G. Hegerl et al., Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model. Clim. Dyn. 10, 1–19 (1994)

    Article  Google Scholar 

  • P. Fernandez, S. Mourato, M. Moreira, L. Pereira, A new approach for computing a flood vulnerability index using cluster analysis. Phys. Chem. Earth 94, 47–55 (2016)

    Article  Google Scholar 

  • J.M. Gibbons, S.J. Ramsden, Robustness of recommended farm plans in england under climate change: a Monte Carlo simulation. Clim. Change 68, 113–133 (2005)

    Article  Google Scholar 

  • M. Gocic, S. Trajkovic, Analysis of changes in meteorological variables using Mann-Kendall and Sens slope estimator statistical tests in Serbia. Global Planet. Change 100, 172–182 (2013)

    Article  Google Scholar 

  • K.H. Hamed, Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 349, 350–363 (2008)

    Article  Google Scholar 

  • J.D. Horel, Complex principal component analysis: theory and examples. J. Clim. Appl. Meteorol. 23, 1660–1673 (1984)

    Article  Google Scholar 

  • G.K. Kanji, 100 Statistical Tests (Sage Publication, New Delhi, 2001)

    Google Scholar 

  • M.G. Kendall, Time Series (Charles Griffin and Co., Ltd., London, UK, 1973)

    Google Scholar 

  • N.C. Matalas, Stochastic hydrology in the context of climate change. Clim. Change 37, 89–101 (1997)

    Article  Google Scholar 

  • K. Mohammadi, H.R. Eslami, R. Kahawita, Parameter estimation of an ARMA model for river flow forecasting using goal programming. J. Hydrol. 331, 293–299 (2006)

    Article  Google Scholar 

  • J. von Neumann, Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Statist. 12, 367–395 (1941)

    Article  Google Scholar 

  • M. New, M. Hulme, Representing uncertainty in climate change scenarios: a Monte-Carlo approach. Integr. Assess. 1, 203–213 (2000)

    Article  Google Scholar 

  • X. Niu, M. Stein, Space-Time ARMA Models for Satellite Ozone Data, in Computing Science and Statistics, ed. by C. Page, R. LePage (Springer, New York, 1990)

    Google Scholar 

  • D.B. Owen, Handbook of Statistical Table (Addison-Wesley, Reading, Mass, 1962)

    Google Scholar 

  • S. Patidar, D. Jenkins, P. Banfill, G. Gibson, Simple statistical model for complex probabilistic climate projections: overheating risk and extreme events. Renew. Energy 61, 23–28 (2014)

    Article  Google Scholar 

  • J. Parente, M.G. Pereira, M. Tonini, Space-time clustering analysis of wildfires: the influence of dataset characteristics, fire prevention policy decisions, weather and climate. Sci. Total Environ. 559, 151C165 (2016)

    Article  Google Scholar 

  • A.O. Pektas, H.K. Cigizoglu, ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient. J. Hydrol. 500, 21–36 (2013)

    Article  Google Scholar 

  • A. Sarhadi, D.H. Burn, G. Yang, A. Ghodsi, Advances in projection of climate change impacts using supervised nonlinear dimensionality reduction techniques. Clim. Dyn. 48, 1329–1351 (2017)

    Article  Google Scholar 

  • M. Valipour, M.E. Banihabib, S.M.R. Behbahani, Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z. (2018). Stochastic Representation and Modeling. In: Multivariate Time Series Analysis in Climate and Environmental Research. Springer, Cham. https://doi.org/10.1007/978-3-319-67340-0_4

Download citation

Publish with us

Policies and ethics