New Trends in Solar Cells Research

Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Solar cells converts the solar photons energy into electrical energy. The first solar cell was realized in 1954 at Bell Laboratories. The functioning principles of this first generation solar cells are based on a p-n homojunction realized in a bulk semiconductor (Silicon or GaAs). Figure 3.1 depicts the charge carriers’ distribution and band diagram levels before and after junction formation.

References

  1. 1.
    A. Fahrenbruch, R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion ( Academic Press, London, 1983)Google Scholar
  2. 2.
    W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)CrossRefGoogle Scholar
  3. 3.
    T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier, Amsterdam, 2006)Google Scholar
  4. 4.
  5. 5.
    F.C. Krebs et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration. Sol Energy Mater. Sol. Cells 93(4), 422–441 (2009)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    CNRS Innovation letters No. 15, (18/04/2015 au 11/06/2015) communicate 10/06/2015Google Scholar
  8. 8.
    B. Wang, L.L. Kerr, Dye sensitized solar cells on paper substrates. Sol. Energy Mater. Sol. Cells 95(8), 2531–2535 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Leonat et al., 4% efficient polymer solar cells on paper substrates. J. Phys. Chem. C 118(30), 16813–16817 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Thin film silicon photovoltaic cells on paper for flexible indoor applications. Adv. Funct. Mater. 25, 3592–3598 (2015)CrossRefGoogle Scholar
  11. 11.
    D.B. Fraser, H.D. Cook, Highly conductive, transparent films of sputtered In2−x SnxO3−y. J. Electrochem. Soc. 119, 1368 (1972)CrossRefGoogle Scholar
  12. 12.
    G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)CrossRefGoogle Scholar
  13. 13.
    M. Girtan, R. Mallet, D. Caillou, G.G. Rusu, M. Rusu, Thermal stability of poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid films electrical properties. Superlattices Microstruct. 46, 44–51 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Girtan, Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Kubis et al., High precision processing of flexible P3HT/PCBM modules with geometric fill factor over 95%. Org. Electron. 15(10), 2256–2263 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Berny et al., Solar trees: First large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 1500342 (2015)Google Scholar
  17. 17.
    S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRefGoogle Scholar
  18. 18.
    Zhinke Liu, Jinhua Li, Feng Yan, Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296–4301 (2013)CrossRefGoogle Scholar
  19. 19.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Girtan, On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films. Org. Electron. 14(1), 200–205 (2013)CrossRefGoogle Scholar
  21. 21.
    H.L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environemental Sci. 5, 5994 (2012)CrossRefGoogle Scholar
  22. 22.
    P. Kumar, S. Chand, Recent progress and future aspects of organic solar cells. Prog. Photovoltaics Res. Appl. 20, 377–415 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Girtan, M. Rusu, Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 94, 446–450 (2010)CrossRefGoogle Scholar
  24. 24.
    M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)CrossRefGoogle Scholar
  25. 25.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Louis Brus, J. Phys. Chem. 90(12), 2555–2560 (1986)CrossRefGoogle Scholar
  28. 28.
    L.Y. Chang, R.R. Lunt, P.R. Brown, V. Bulovic, M.G. Bawendi, Low-temperature solution-processed solar cells based on PbS Colloidal Quantum Dot/CdS heterojunctions. Nano Lett. 13(3), 994–999 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997)CrossRefGoogle Scholar
  30. 30.
    I. Ramiro, A. Marti, E. Antolin, A. Luque, Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovolt. 4, 736–748 (2014)CrossRefGoogle Scholar
  31. 31.
    C.Y. Yang, M.S. Qin, Y.M. Wang, D.Y. Wan, F.Q. Huang, J.H. Lin, Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response. Sci. Rep. 3(1286), 1–7 (2013)Google Scholar
  32. 32.
    I. Ramiro, E. Antolin, J. Hwang, A. Teran, A.J. Martin, P.G. Linares, J. Millunchick, J. Phillips, A. Marti, A. Luque, Three-bandgap absolute quantum efficiency in GaSb/GaAs quantum dot intermediate band solar cells. IEEE J. Photovoltaics 7(2), 508–512 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  34. 34.
    B. Dongqin et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016)Google Scholar
  35. 35.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRefGoogle Scholar
  36. 36.
    H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)CrossRefGoogle Scholar
  37. 37.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)Google Scholar
  38. 38.
    H. Choi, C-K Mai, H-B Kim, J. Jeong, S. Song, G.C. Bazan, J.Y. Kim, A.J. Heeger, Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6(7348), 1–6 (2015)Google Scholar
  39. 39.
    J.P. Mailoa et al., A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(121105), 1–4 (2015)Google Scholar
  40. 40.
    T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)CrossRefGoogle Scholar
  41. 41.
    T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92(3), 1668–1674 (2002)CrossRefGoogle Scholar
  42. 42.
    J. Merigeon et al., Studies on Pr3+–Yb3+ co-doped ZBLA as rare earth down convertor glasses for solar cells encapsulation. Opt. Mater. 48, 243–246 (2015)CrossRefGoogle Scholar
  43. 43.
    O. Maalej, J. Merigeon, B. Boulard, M. Girtan, Visible to near-infrared down-shifting in Tm3+ doped fluoride glasses for solar cells efficiency enhancement. Opt. Mater. 60, 235–239 (2016)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.University of AngersAngersFrance

Personalised recommendations