Advertisement

Outperforming Image Segmentation by Exploiting Approximate K-Means Algorithms

  • Flora Amato
  • Mario Barbareschi
  • Giovanni CozzolinoEmail author
  • Antonino Mazzeo
  • Nicola Mazzocca
  • Antonio Tammaro
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 217)

Abstract

Recently emerged as an effective approach, Approximate Computing introduces a new design paradigm for trade system overhead off for result quality. Indeed, by relaxing the need for a fully precise outcome, Approximate Computing techniques allow to gain performance parameters, such as computational time or area of integrated circuits, by executing inexact operations. In this work, we propose an approximate version of the K-means algorithm to be used for the image segmentation, with the aim to reduce the area needed to synthesize it on a hardware target. In particular, we detail the methodology to find approximate variants of the K-means and some experimental evidences as a proof-of-concept.

References

  1. 1.
    Thilagamani, S., Shanthi, N.: A survey on image segmentation through clustering. Int. J. Res. Rev. Inf. Sci. 1(1), 14–17 (2011)Google Scholar
  2. 2.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)Google Scholar
  3. 3.
    Cilardo, A.: New techniques and tools for application-dependent testing of FPGA-based components. IEEE Trans. Ind. Inform. 11(1), 94–103 (2015)Google Scholar
  4. 4.
    Cilardo, A., Fusella, E., Gallo, L., Mazzeo, A.: Automated synthesis of FPGA-based heterogeneous interconnect topologies. In: 2013 23rd International Conference on Field Programmable Logic and Applications (FPL), pp. 1–8. IEEE (2013)Google Scholar
  5. 5.
    Hussain, H.M., Benkrid, K., Seker, H., Erdogan A.T.: FPGA implementation of K-means algorithm for bioinformatics application: an accelerated approach to clustering microarray data. In: 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 248–255. IEEE (2011)Google Scholar
  6. 6.
    Chippa, V.K., Chakradhar, S.T., Roy, K., Raghunathan, A.: Analysis and characterization of inherent application resilience for approximate computing. In: Proceedings of the 50th Annual Design Automation Conference, p. 113. ACM (2013)Google Scholar
  7. 7.
    Bosio, A., Virazel, A., Girard, P., Barbareschi,M.: Approximate computing: design and test for integrated circuits. In: 2017 8th Latin American Test Symposium (LATS), p. 1–6. IEEE (April 2016)Google Scholar
  8. 8.
    Bosio, A., Debaud, P., Girard, P., Guilhot, S., Valka, M., Virazel, A.: Auto-adaptive ultra-low power IC. In: 2016 International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6 (April 2016)Google Scholar
  9. 9.
    Venkataramani, S., Chakradhar, S.T., Roy, K., Raghunathan,A.: Approximate computing and the quest for computing efficiency. In: Proceedings of the 52nd Annual Design Automation Conference, p. 120. ACM (2015)Google Scholar
  10. 10.
    Amato, F., Barbareschi, M., Casola, V., Mazzeo, A.: An FPGA-based smart classifier for decision support systems. In: Intelligent Distributed Computing VII, pp. 289–299. Springer (2014)Google Scholar
  11. 11.
    Amato, F., Mazzeo, A., Moscato, V., Picariello, A.: A framework for semantic interoperability over the cloud. In: 2013 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 1259–1264. IEEE (2013)Google Scholar
  12. 12.
    Misailovic, S., Sidiroglou, S., Rinard, M.C.: Dancing with uncertainty. In: Proceedings of the 2012 ACM Workshop on Relaxing Synchronization for Multicore and Manycore Scalability, pp. 51–60. ACM (2012)Google Scholar
  13. 13.
    Samadi, M., Lee, J., Jamshidi, D.A., Hormati, A., Mahlke, S.: Sage: self-tuning approximation for graphics engines. In: Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 13–24. ACM (2013)Google Scholar
  14. 14.
    Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing performance vs. accuracy trade-offs with loop perforation. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, pp. 124–134. ACM (2011)Google Scholar
  15. 15.
    Liu, S., Pattabiraman, K., Moscibroda, T., Zorn, B.G.: Flicker: saving refresh-power in mobile devices through critical data partitioning. In: Proceedings of International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). Citeseer (2009)Google Scholar
  16. 16.
    Yetim, Y., Martonosi, M., Malik, S.: Extracting useful computation from error-prone processors for streaming applications. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2013, pp. 202–207. IEEE (2013)Google Scholar
  17. 17.
    Barbareschi, M., Iannucci, F., Mazzeo, A.: Automatic design space exploration of approximate algorithms for big data applications. In: 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 40–45. IEEE (2016)Google Scholar
  18. 18.
    Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. (CSUR) 48(4), 62 (2016)Google Scholar
  19. 19.
    Barbareschi, M., Iannucci, F., Mazzeo, A.: An extendible design exploration tool for supporting approximate computing techniques. In: 2016 International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6. IEEE (2016)Google Scholar
  20. 20.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient K-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)Google Scholar
  21. 21.
    Barbareschi, M., Iannucci, F., Mazzeo, A.: A pruning technique for B&B based design exploration of approximate computing variants. In: 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 707–712. IEEE (2016)Google Scholar
  22. 22.
    Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K., Bailey, D.H., Iancu, C., Hough,D.: Precimonious: tuning assistant for floating-point precision. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, p. 27. ACM (2013)Google Scholar
  23. 23.
    Liefooghe, A., Jourdan, L., Legrand, T., Humeau, J., Talbi, E.G.: Paradiseo-moeo: a software framework for evolutionary multi-objective optimization. In: Advances in Multi-Objective Nature Inspired Computing, pp. 87–117. Springer (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Flora Amato
    • 1
  • Mario Barbareschi
    • 1
  • Giovanni Cozzolino
    • 1
    Email author
  • Antonino Mazzeo
    • 1
  • Nicola Mazzocca
    • 1
  • Antonio Tammaro
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica e delle Tecnologie Dell’informazioneUniversity of Naples Federico IINaplesItaly

Personalised recommendations