Optimal Content Distribution and Multi-resource Allocation in Software Defined Virtual CDNs

  • Jaime Llorca
  • Antonia M. Tulino
  • Antonio Sforza
  • Claudio SterleEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 217)


A software defined virtual content delivery network (SDvCDN) is a virtual cache network deployed fully in software over a programmable cloud network infrastructure that can be elastically consumed and optimized using global information about network conditions and service requirements. We formulate the joint content-resource allocation problem for the design of SDvCDNs, as a minimum cost mixed-cast flow problem with resource activation decisions. Our solution optimizes the placement and routing of content objects along with the allocation of the required virtual storage, compute, and transport resources, capturing activation and operational costs, content popularity, unicast and multicast delivery, as well as capacity and latency constraints. Numerical experiments confirm the benefit of elastically optimizing the SDvCDNs configuration, compared to the dedicated provisioning of traditional CDNs.


Softwared defined virtual CDN Flow-location-routing problem 


  1. 1.
    Alcatel-Lucent Strategic White Paper: The Programmable Cloud Network—A Primer on SDN and NFV, June (2013)Google Scholar
  2. 2.
    Weldon, M.: The Future X Network. CRC Press, October (2015)Google Scholar
  3. 3.
    Baev, I.D., Rajaraman, R., Swamy, C. : Approximation algorithms for data placement in arbitrary networks. In: ACM SODA’01 (2001)Google Scholar
  4. 4.
    Borst, S., Gupta, V., Walid, A.: Distributed caching algorithms for content distribution networks. In: IEEE INFOCOM’10. San Diego (2010)Google Scholar
  5. 5.
    Krishnan, P., Raz, D., Shavitt, Y.: The cache location problem. IEEE/ACM Trans. Netw. 8(5), 568–582 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kalpakis, K., Dasgupta, K., Wolfson, O.: Optimal placement of replicas in trees with read, write, and storage costs. IEEE Trans. Par. Distr. Sys. 628–637 (2001)Google Scholar
  7. 7.
    Qiu, L., Padmanabhan, V., Voelker, G.: On the placement of web server replicas. IEEE INFOCOM’01 3 (2001)Google Scholar
  8. 8.
    Korupolu, M.R., Dahlin, M.: Coordinated placement and replacement for large-scale distributed caches. IEEE Trans. Know. Data Eng. 14, 1317–1329 (2002)Google Scholar
  9. 9.
    Llorca, J., Tulino, A.M.: The content distribution problem and its complexity classification. In: Alcatel-Lucent Technical Report (2013)Google Scholar
  10. 10.
    Fischer, A., Botero, J., Beck, M., de Meer, H., Hesselbach, X.: Virtual network embedding: a survey. IEEE Comm. Surv. Tutor. 15(4) (2013)Google Scholar
  11. 11.
    Broberg, J., et al.: MetaCDN: harnessing storage clouds for high performance content delivery. J. Net. Comp. App. 32 (2009)Google Scholar
  12. 12.
    Srinivasan, S., et al.: ActiveCDN: cloud computing meets content delivery networks. In: Technical Report. Columbia University (2012)Google Scholar
  13. 13.
    Jin, Y., et al.: CoDaaS: an experiment cloud-centric content delivery platform for user-generated contents. In: ICNC’12 (2012)Google Scholar
  14. 14.
    Bolla, R., Lombardo, C., Bruschi, R., Mangialardi, S.: DROPv2: energy efficiency through network function virtualization. In: IEEE Network, pp. 26–32. April (2014)Google Scholar
  15. 15.
    Woo, H., Han, S., Heo, E., Kim, J., Shin, S.: A virtualized, programmable content delivery network. services, and engineering. In: IEEE Mobile Cloud Computing (2014)Google Scholar
  16. 16.
    Llorca, J., Sterle, C., Tulino, A.M., Choi, N., Sforza, A., Amideo, A.E.: Joint content-resource allocation in software defined virtual CDNs. In: IEEE ICC’15 CCSNA Workshop. England, London (2015)Google Scholar
  17. 17.
    Grtschel, M., Raack, C., Werner, A.: Towards optimizing the deployment of optical access networks. EURO J. Opt. Comput. 2, 17–53 (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ahmadian, S., Swamy, C.: Improved approximation guarantees for lower-bounded facility location. CS arXiV, September (2012)Google Scholar
  19. 19.
  20. 20.
    Breslau, L., et al.: Web caching and Zipf-like distributions: evidence and implications. In: INFOCOM’99Google Scholar
  21. 21.
    Cha, M., Rodriguez, P., Crowcroft, J., Moon, S., Amatriain, X.: Watching television over an IP network. In: ACM Internet Measurement Conference (IMC). Greece, October (2008)Google Scholar
  22. 22.
    Cisco Visual Networking Index. Forecast and methodology, 2013–2018. Cisco, June (2014)Google Scholar
  23. 23.
    Bruno, G., Genovese, A., Piccolo, C.: Capacity management in public service facility networks: a model, computational tests and a case study. Opt. Lett. 10(5), 975–995 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Barbati, M., Piccolo, C.: Equality measures properties for location problems. Opt. Lett. 10(5), 903–920 (2016)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jaime Llorca
    • 1
  • Antonia M. Tulino
    • 1
    • 2
  • Antonio Sforza
    • 2
  • Claudio Sterle
    • 2
    Email author
  1. 1.Nokia Bell LabsCrawford HillUSA
  2. 2.Department of Electrical Engineering and Information TechnologyUniversity of NaplesNaplesItaly

Personalised recommendations