uStorage - A Storage Architecture to Provide Block-Level Storage Through Object-Based Storage

  • Felipe Oliveira Gutierrez
  • Vinicius Cardoso Garcia
  • Jose Fernando S. Cardoso
  • Thiago Jamir
  • Josino R. Neto
  • Rodrigo Assad
  • Marcos Barreto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10465)

Abstract

Block-level Storage is widely used to support heavy workloads. It can be directly accessed by the operating system, but it faces some durability issues, hardware limitations and performance degradation in geographically distributed systems. Object-based Storage Device (OSD) is a data storage concept widely used to support write-once-read-many (WORM) systems. Because OSD contains data, metadata and an unique identifier, it becomes very powerful and customizable. OSDs are ideal for solving the increasing problems of data growth and resilience requirements while mitigating costs. This paper describes a scalable storage architecture that uses OSD from a distributed P2P Cloud Storage system and delivers a Block-level Storage layer to the user. This architecture combines the advantages of the replication, reliability, and scalability of a OSD on commodity hardware with the simplicity of raw block for data-intensive workload. We retrieve data from the OSD in a set of blocks called buckets, allowing read-ahead operations to improve the performance of the raw block layer. Through this architecture we show the possibility of using OSD on the back end and deliver a storage layer based on raw blocks with better performance to the end user. We evaluated the proposed architecture based on the cache behavior to understand non-functional properties. Experiments were performed with different cache sizes. High throughput performance was measured for heavy workloads at the two storage layers.

Keywords

Software architecture Cloud computing Storage as a service Object-based Storage Block-level Storage 

Notes

Acknowledgment

This work was supported by Ustore(http://www.usto.re) and partially supported by the National Institute of Science and Technology for Software Engineering (INES 2.0(http://www.ines.org.br)) grants 465614/2014-0, funded by CNPq(http://www.cnpq.br) grants 573964/2008-4 and FACEPE(http://www.facepe.br) grants APQ-1037-1.03/08.

References

  1. 1.
    Aizman, A.: Location independent scalable file and block storage. Google Patents (2012). https://www.google.com/patents/US20120011176, uS Patent App. 12/874,978
  2. 2.
    Axboe, J.: Fio-flexible i/o tester synthetic benchmark (2005). https://github.com/axboe/fio. Accessed 13 June 2015
  3. 3.
    Chiu, D., Agrawal, G.: Evaluating caching and storage options on the amazon web services cloud. In: 2010 11th IEEE/ACM International Conference on Grid Computing (GRID), pp. 17–24. IEEE (2010)Google Scholar
  4. 4.
    Duarte, M.P., Assad, R.E., Ferraz, F.S., Ferreira, L.P., de Lemos Meira, S.R.: An availability algorithm for backup systems using secure p2p platform. In: 2010 Fifth International Conference on Software Engineering Advances (ICSEA), pp. 477–481. IEEE (2010)Google Scholar
  5. 5.
    Durão, F., Assad, R., Fonseca, A., Fernando, J., Garcia, V., Trinta, F.: USTO.RE: a private cloud storage software system. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 452–466. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39200-9_38 CrossRefGoogle Scholar
  6. 6.
    Factor, M., Meth, K., Naor, D., Rodeh, O., Satran, J.: Object storage: the future building block for storage systems. In: 2005 IEEE International Symposium on Mass Storage Systems and Technology, pp. 119–123, June 2005Google Scholar
  7. 7.
    Fitzpatrick, B.: Distributed caching with memcached. Linux J. 2004(124), 5 (2004)Google Scholar
  8. 8.
    Gong, L.: Jxta: a network programming environment. IEEE Internet Comput. 5(3), 88–95 (2001)CrossRefGoogle Scholar
  9. 9.
    Kedem, N., Amit, Y., Amit, N.: Method and system for compression of data for block mode access storage, 9 September 2008. https://www.google.com/patents/US7424482, uS Patent 7,424,482
  10. 10.
    Khattar, R.K., Murphy, M.S., Tarella, G.J., Nystrom, K.E.: Introduction to Storage Area Network, SAN. IBM Corporation, International Technical Support Organization (1999)Google Scholar
  11. 11.
    Kruchten, P.B.: The 4+1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)CrossRefGoogle Scholar
  12. 12.
    Martin, B.E., Pedersen, C.H., Bedford-Roberts, J.: An object-based taxonomy for distributed computing systems. Computer 24(8), 17–27 (1991). doi: 10.1109/2.84873 CrossRefGoogle Scholar
  13. 13.
    Mesnier, M., Ganger, G.R., Riedel, E.: Object-based storage. IEEE Commun. Mag. 41(8), 84–90 (2003)CrossRefGoogle Scholar
  14. 14.
    Nagle, D., Serenyi, D., Matthews, A.: The panasas activescale storage cluster: delivering scalable high bandwidth storage. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, SC 2004, p. 53. IEEE Computer Society, Washington (2004).  10.1109/SC.2004.57
  15. 15.
    Neto, A.J., da Fonseca, N.L.: Um estudo comparativo do desempenho dos protocolos iscsi e fibre channel. IEEE Latin Am. Trans. 5(3), 151–157 (2007)Google Scholar
  16. 16.
    Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-structured file system. ACM Trans. Comput. Syst. (TOCS) 10(1), 26–52 (1992)CrossRefGoogle Scholar
  17. 17.
    Ruemmler, C., Wilkes, J.: An introduction to disk drive modeling. Computer 27(3), 17–28 (1994)CrossRefGoogle Scholar
  18. 18.
    Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., Zeidner, E.: Ietf rfc 3720: internet small computer systems interface (iscsi), April 2004. http://www.ietf.org/rfc/rfc3720.txt
  19. 19.
    Gnanasundaram, S., Shrivastava, A. (eds.): Information Storage and Management: Storing, Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Environments. EBL-Schweitzer, Wiley, Hoboken (2012). https://books.google.com.br/books?id=PU7gkW9ArxIC Google Scholar
  20. 20.
    Silberschatz, A., Galvin, P.B., Gagne, G.: Sistemas Operacionais com Java. Elsevier, Rio de Janeiro (2004)Google Scholar
  21. 21.
    Performance Test Specification: Solid state storage performance test specification enterprise. Citeseer (2013)Google Scholar
  22. 22.
    Steinberg, D., Birk, Y.: An empirical analysis of the ieee-1394 serial bus protocol. IEEE Micro 20(1), 58–65 (2000)CrossRefGoogle Scholar
  23. 23.
    Troppens, U., Erkens, R., Mueller-Friedt, W., Wolafka, R., Haustein, N.: Storage networks explained: basics and application of fibre channel SAN, NAS, iSCSI, infiniband and FCoE. John Wiley & Sons (2011)Google Scholar
  24. 24.
    Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-performance distributed file system. In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation. pp. 307–320, OSDI 2006, USENIX Association, Berkeley, CA, USA (2006). http://dl.acm.org/citation.cfm?id=1298455.1298485
  25. 25.
    Yin, L., Uttamchandani, S., Katz, R.: An empirical exploration of black-box performance models for storage systems. In: 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS 2006, pp. 433–440. IEEE (2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Felipe Oliveira Gutierrez
    • 1
  • Vinicius Cardoso Garcia
    • 1
  • Jose Fernando S. Cardoso
    • 1
  • Thiago Jamir
    • 1
  • Josino R. Neto
    • 1
    • 2
  • Rodrigo Assad
    • 3
  • Marcos Barreto
    • 4
  1. 1.Universidade Federal de Pernambuco (UFPE) - CInRecifeBrazil
  2. 2.Instituto Federal de Pernambuco (IFPE)PalmaresBrazil
  3. 3.Universidade Federal Rural de Pernambuco (UFRPE)RecifeBrazil
  4. 4.Universidade Federal da Bahia (UFBA)SalvadorBrazil

Personalised recommendations