Skip to main content

Retinal Prostheses: Bioengineering Considerations

  • Chapter
  • First Online:
Retinal Prosthesis

Abstract

A typical retinal prosthesis is composed of multiple main functional blocks that operate as an integrated system, including an image acquisition module, an electronics module, and an electrode array. The image acquisition device is responsible for obtaining light information. The images are converted to electrical signals and processed by the electronics module into an electrical stimulation pattern that is applied to the retina through multielectrode array. These three main functional blocks are implemented in a variety of ways. Implementation depends on whether the array is passive (no implanted power source) or active (implanted power source). Another distinguishing design choice of retinal prostheses is the location of electrode array forming a functional interface with retina, which fall into three types: epiretinal (on the top surface of retina), subretinal (between retina and RPE/choroid), and suprachoroidal prostheses (between sclera and choroid). In this chapter, we will review important bioengineering considerations for retinal prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ameri H, Ratanapakorn T, Ufer S, Eckhardt H, Humayun MS, Weiland JD. Toward a wide-field retinal prosthesis. J Neural Eng. 2009;6:035002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton JJS, Benatar M. An introduction to perimetry and the normal visual field. In: Field of vision: a manual and atlas of perimetry. Totowa, NJ: Humana Press; 2003.

    Chapter  Google Scholar 

  • Behrend MR, Ahuja AK, Humayun MS, Weiland JD, Chow RH. Selective labeling of retinal ganglion cells with calcium indicators by retrograde loading in vitro. J Neurosci Methods. 2009;179:166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomash I, Roudi Y, Nirenberg S. A virtual retina for studying population coding. PLoS One. 2013;8:e53363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterwick A, Huie P, Jones BW, Marc RE, Marmor M, Palanker D. Effect of shape and coating of a subretinal prosthesis on its integration with the retina. Exp Eye Res. 2009;88:22–9.

    Article  CAS  PubMed  Google Scholar 

  • Chang Y-C, Weiland JD. Threshold manipulation of retinal ganglion cells using precondition anodic stimulation. San Diego: Society of Neuroscience; 2016.

    Google Scholar 

  • Chen K, Yang Z, Hoang L, Weiland J, Humayun M, Liu W. An integrated 256-channel epiretinal prosthesis. IEEE J Solid State Circuits. 2010;45:1946–56.

    Article  Google Scholar 

  • Chen K, Lo YK, Yang Z, Weiland JD, Humayun MS, Liu W. A system verification platform for high-density epiretinal prostheses. IEEE Trans Biomed Circuits Syst. 2013;7:326–37.

    Article  CAS  PubMed  Google Scholar 

  • Cogan SF, Edell DJ, Guzelian AA, Ping Liu Y, Edell R. Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J Biomed Mater Res A. 2003;67:856–67.

    Article  PubMed  Google Scholar 

  • Dacey DM. Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res. 1999;18:737–63.

    Article  CAS  PubMed  Google Scholar 

  • Djilas M, Oles C, Lorach H, Bendali A, Degardin J, Dubus E, Lissorgues-Bazin G, Rousseau L, Benosman R, Ieng SH, Joucla S, Yvert B, Bergonzo P, Sahel J, Picaud S. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J Neural Eng. 2011;8:046020.

    Article  CAS  PubMed  Google Scholar 

  • Dommel NB, Wong YT, Lehmann T, Dodds CW, Lovell NH, Suaning GJ. A CMOS retinal neurostimulator capable of focussed, simultaneous stimulation. J Neural Eng. 2009;6:035006.

    Article  CAS  PubMed  Google Scholar 

  • Eckmiller R, Neumann D, Baruth O. Tunable retina encoders for retina implants: why and how. J Neural Eng. 2005;2:S91–S104.

    Article  PubMed  Google Scholar 

  • Freeman DK, Fried SI. Multiple components of ganglion cell desensitization in response to prosthetic stimulation. J Neural Eng. 2011;8:016008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman DK, Eddington DK, Rizzo JF 3rd, Fried SI. Selective activation of neuronal targets with sinusoidal electric stimulation. J Neurophysiol. 2010;104:2778–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fried SI, Hsueh HA, Werblin FS. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol. 2006;95:970–8.

    Article  CAS  PubMed  Google Scholar 

  • Frishman LJ, Freeman AW, Troy JB, Schweitzer-Tong DE, Enroth-Cugell C. Spatiotemporal frequency responses of cat retinal ganglion cells. J Gen Physiol. 1987;89:599–628.

    Article  CAS  PubMed  Google Scholar 

  • Gill EC, Antalek J, Kimock FM, Nasiatka PJ, Mcintosh BP, Tanguay ARJ, Weiland JD. High-density feedthrough technology for hermetic biomedical micropackaging. MRS Online Proc Libr Arch. 2013;1572:mrss13-1572-ss05-08. (6 pages)

    Article  Google Scholar 

  • Gross M, Buss R, Kohler K, Schaub J, Jager D. Optical signal and energy transmission for a retina implant. In: Engineering in Medicine and Biology, 1999. 21st annual conference and the 1999 annual fall meeting of the Biomedical Engineering Society. BMES/EMBS conference, 1999. Proceedings of the first joint 1999, 476, vol. 1.

    Google Scholar 

  • Habib AG, Cameron MA, Suaning GJ, Lovell NH, Morley JW. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration. J Neural Eng. 2013;10:036013.

    Article  PubMed  Google Scholar 

  • Jensen RJ, Rizzo JF 3rd. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res. 2006;83:367–73.

    Article  CAS  PubMed  Google Scholar 

  • Jepson LH, Hottowy P, Mathieson K, Gunning DE, Dabrowski W, Litke AM, Chichilnisky EJ. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses. J Neurosci. 2013;33:7194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang G, Zhou DD. Technology advances and challenges in hermetic packaging for implantable medical devices. In: Zhou DD, Greenbaum E, editors. Implantable neural prostheses 2. New York: Springer; 2010.

    Google Scholar 

  • Lorach H, Benosman R, Marre O, Ieng SH, Sahel JA, Picaud S. Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J Neural Eng. 2012;9:066004.

    Article  PubMed  Google Scholar 

  • Margalit E, Thoreson WB. Inner retinal mechanisms engaged by retinal electrical stimulation. Invest Ophthalmol Vis Sci. 2006;47:2606–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mccarthy C, Feng D, Barnes N. Augmenting intensity to enhance scene structure in prosthetic vision. In: 2013 IEEE international conference on multimedia and expo workshops (ICMEW), 15–19 July 2013. p. 1–6.

    Google Scholar 

  • Meister M, Berry MJ 2nd. The neural code of the retina. Neuron. 1999;22:435–50.

    Article  CAS  PubMed  Google Scholar 

  • Monge M, Raj M, Nazari MH, Chang HC, Zhao Y, Weiland JD, Humayun MS, Tai YC, Emami A. A fully intraocular high-density self-calibrating epiretinal prosthesis. IEEE Trans Biomed Circuits Syst. 2013;7:747–60.

    Article  PubMed  Google Scholar 

  • Nanduri D, Fine I, Greenberg RJ, Horsager A, Boynton GM, Weiland JD. Predicting the percepts of electrical stimulation in retinal prosthesis subjects. In: Computational and systems neuroscience meeting, 2011.

    Google Scholar 

  • Nanduri D, Fine I, Horsager A, Boynton GM, Humayun MS, Greenberg RJ, Weiland JD. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Invest Ophthalmol Vis Sci. 2012;53:205–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasiatka PJ, Mcintosh BP, Stiles NRB, Hauer MC, Weiland JD, Humayun MS, Tanguay AR Jr. An intraocular camera for provision of natural foveation in retinal prostheses. In: Neural interfaces conference, Long Beach, CA, 2010.

    Google Scholar 

  • Olmedo-Payá A, Martínez-Álvarez A, Cuenca-Asensi S, Ferrández JM, Fernández E. Modeling the role of fixational eye movements in real-world scenes. Neurocomputing. 2015;151(Part 1):78–84.

    Article  Google Scholar 

  • Ortmanns M, Unger N, Rocke A, Gehrke M, Tietdke HJ. A 0.1 mm/Sup 2/, digitally programmable nerve stimulation pad cell with high-voltage capability for a retinal implant. In: 2006 IEEE international solid state circuits conference – digest of technical papers, 6–9 Feb 2006, 2006. p. 89–98.

    Google Scholar 

  • Palanker D, Vankov A, Huie P, Baccus S. Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng. 2005;2:S105–20.

    Article  PubMed  Google Scholar 

  • Pradeep V, Medioni G, Weiland J. Visual loop closing using multi-resolution SIFT grids in metric-topological SLAM. In: IEEE conference on computer vision and pattern recognition, 2009 (CVPR 2009), 20–25 June 2009, 2009. p. 1438–45.

    Google Scholar 

  • Rose TL, Robblee LS. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng. 1990;37:1118–20.

    Article  CAS  PubMed  Google Scholar 

  • Schuettler M, Ordonez JS, Silva Santisteban T, Schatz A, Wilde J, Stieglitz T. Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1585–8.

    PubMed  Google Scholar 

  • Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol. 2006;95:3311–27.

    Article  PubMed  Google Scholar 

  • Sharma A, Rieth L, Tathireddy P, Harrison R, Oppermann H, Klein M, Topper M, Jung E, Normann R, Clark G, Solzbacher F. Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA): implications for long term functionality. Sens Actuators A Phys. 2012;188:167–72.

    Article  CAS  PubMed  Google Scholar 

  • Shire DB, Ellersick W, Kelly SK, Doyle P, Priplata A, Drohan W, Mendoza O, Gingerich M, Mckee B, Wyatt JL, Rizzo JF. ASIC design and data communications for the Boston retinal prosthesis. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:292–5.

    PubMed  PubMed Central  Google Scholar 

  • Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hipp S, Hortdorfer G, Kernstock C, Koitschev A, Kusnyerik A, Sachs H, Schatz A, Stingl KT, Peters T, Wilhelm B, Zrenner E. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci. 2013;280:20130077.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, Groppe M, Jackson TL, Maclaren RE, Koitschev A, Kusnyerik A, Neffendorf J, Nemeth J, Naeem MA, Peters T, Ramsden JD, Sachs H, Simpson A, Singh MS, Wilhelm B, Wong D, Zrenner E. Subretinal visual implant alpha IMS—clinical trial interim report. Vis Res. 2015;111:149–60.

    Article  PubMed  Google Scholar 

  • Suaning GJ, Lavoie P, Forrester J, Armitage T, Lovell NH. Microelectronic retinal prosthesis: III. A new method for fabrication of high-density hermetic feedthroughs. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1638–41.

    CAS  PubMed  Google Scholar 

  • Suesserman MF, Spelman FA, Rubinstein JT. In vitro measurement and characterization of current density profiles produced by nonrecessed, simple recessed, and radially varying recessed stimulating electrodes. IEEE Trans Biomed Eng. 1991;38:401–8.

    Article  CAS  PubMed  Google Scholar 

  • Van Rullen R, Thorpe SJ. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 2001;13:1255–83.

    Article  CAS  PubMed  Google Scholar 

  • Vanhoestenberghe A, Donaldson N. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. J Neural Eng. 2013;10:031002.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Liu W, Sivaprakasam M, Zhou M, Weiland JD, Humayun MS. A dual band wireless power and data telemetry for retinal prosthesis. Conf Proc IEEE Eng Med Biol Soc. 2006;1:4392–5.

    PubMed  Google Scholar 

  • Weiland JD, Humayun MS. Retinal prosthesis. IEEE Trans Biomed Eng. 2014;61:1412–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng. 2002;49:1574–9.

    Article  PubMed  Google Scholar 

  • Weiland JD, Kimock FM, Yehoda JE, Gill E, Mclntosh BP, Nasiatka PJ, Tanguay AR. Chip-scale packaging for bioelectronic implants. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER), 6–8 Nov 2013, 2013. p. 931–6.

    Google Scholar 

  • Weitz AC, Behrend MR, Lee NS, Klein RL, Chiodo VA, Hauswirth WW, Humayun MS, Weiland JD, Chow RH. Imaging the response of the retina to electrical stimulation with genetically encoded calcium indicators. J Neurophysiol. 2013;109:1979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitz AC, Behrend MR, Ahuja AK, Christopher P, Wei J, Wuyyuru V, Patel U, Greenberg RJ, Humayun MS, Chow RH, Weiland JD. Interphase gap as a means to reduce electrical stimulation thresholds for epiretinal prostheses. J Neural Eng. 2014;11:–016007.

    Google Scholar 

  • Wilke RG, Moghadam GK, Lovell NH, Suaning GJ, Dokos S. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J Neural Eng. 2011;8:046016.

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Wang J, Liu C, Carlisle JA, Mech B, Greenberg R, Guven D, Freda R, Humayun MS, Weiland J, Auciello O. In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. J Biomed Mater Res B Appl Biomater. 2006;77:273–81.

    Article  PubMed  Google Scholar 

  • Yue L, Weiland JD, Roska B, Humayun MS. Retinal stimulation strategies to restore vision: fundamentals and systems. Prog Retin Eye Res. 2016;53:21–47.

    Article  PubMed  Google Scholar 

  • Zhang Y, Rauen SL, Koss M, Calle A, Diniz B, Swenson S, Markland FS, Ufer S, Eckhardt H, Humayun MS, Weiland JD. Wide-field retinal prosthesis with three dimensional, contoured, silicone/polyimide substrates. In: IEEE neural engineering conference, San diego, CA, 2013.

    Google Scholar 

  • Zhou M, Yuce MR, Liu W. A non-coherent DPSK data receiver with interference cancellation for dual-band transcutaneous telemetries. IEEE J Solid State Circuits. 2008;43:2003–12.

    Article  Google Scholar 

  • Zhou DD, Dorn JD, Greenberg RJ. The Argus II retinal prosthesis system: an overview. In: IEEE ICME conference, San Jose, CA, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Chuan Chang Ph.D. or James D. Weiland Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chang, YC., Weiland, J.D., Humayun, M.S. (2018). Retinal Prostheses: Bioengineering Considerations. In: Humayun, M., Olmos de Koo, L. (eds) Retinal Prosthesis. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-67260-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67260-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67258-8

  • Online ISBN: 978-3-319-67260-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics