Lost in Re-Election: A Tale of Two Spanish Online Campaigns

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10540)

Abstract

In the 2010 decade, Spanish politics have transitioned from bipartidism to multipartidism. This change led to an unstable situation which eventually led to the rare scenario of two general elections within six months. The two elections had a mayor difference: two important left-wing parties formed a coalition in the second election while they had run separately in the first one. In the second election and after merging, the coalition lost around 1M votes, contradicting opinion polls. In this study, we perform community analysis of the retweet networks of the online campaigns to assess whether activity in Twitter reflects the outcome of both elections. The results show that the left-wing parties lost more online supporters than the other parties. Furthermore, we find that Twitter activity of the supporters unveils a decrease in engagement especially marked for the smaller party in the coalition, in line with post-electoral traditional polls.

Keywords

Twitter Politics Political parties Spanish elections Online campaigning Political coalition Engagement Political participation 

References

  1. 1.
    Aragón, P., Kappler, K.E., Kaltenbrunner, A., Laniado, D., Volkovich, Y.: Communication dynamics in Twitter during political campaigns: the case of the 2011 Spanish national election. Policy Internet 5(2), 183–206 (2013)CrossRefGoogle Scholar
  2. 2.
    Aragón, P., Volkovich, Y., Laniado, D., Kaltenbrunner, A.: When a movement becomes a party: computational assessment of new forms of political organization in social media. In: ICWSM 2016 - 10th International AAAI Conference on Web and Social Media. The AAAI Press (2016)Google Scholar
  3. 3.
    Bakker, T.P., De Vreese, C.H.: Good news for the future? Young people, internet use, and political participation. Commun. Res. 38(4), 451–470 (2011)CrossRefGoogle Scholar
  4. 4.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  5. 5.
    Caldarelli, G., Chessa, A., Pammolli, F., Pompa, G., Puliga, M., Riccaboni, M., Riotta, G.: A multi-level geographical study of Italian political elections from Twitter data. PloS One 9(5), e95809 (2014)CrossRefGoogle Scholar
  6. 6.
    Castells, M.: The new public sphere: global civil society, communication networks, and global governance. Ann. Am. Acad. Polit. Soc. Sci. 616(1), 78–93 (2008)CrossRefGoogle Scholar
  7. 7.
    Chung, J.E., Mustafaraj, E.: Can collective sentiment expressed on Twitter predict political elections? In: AAAI, vol. 11, pp. 1770–1771 (2011)Google Scholar
  8. 8.
    Conover, M., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., Flammini, A.: Political polarization on Twitter. In: ICWSM (2011)Google Scholar
  9. 9.
    Dimitrova, D.V., Shehata, A., Strömbäck, J., Nord, L.W.: The effects of digital media on political knowledge and participation in election campaigns: evidence from panel data. Commun. Res. 41(1), 95–118 (2014)CrossRefGoogle Scholar
  10. 10.
    Ferrándiz, J.P.: Fidelidades y fugas para explicar los resultados del 26j (2016). http://metroscopia.org/fidelidades-y-fugas-para-explicar-los-resultados-del-26j/. Accessed 10 June 2017
  11. 11.
    Gayo-Avello, D.: No, you cannot predict elections with Twitter. IEEE Internet Comput. 16(6), 91–94 (2012)CrossRefGoogle Scholar
  12. 12.
    Holt, K., Shehata, A., Strömbäck, J., Ljungberg, E.: Age and the effects of news media attention and social media use on political interest and participation: do social media function as leveller? Eur. J. Commun. 28(1), 19–34 (2013)CrossRefGoogle Scholar
  13. 13.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz (1901)Google Scholar
  14. 14.
    Jungherr, A.: Twitter use in election campaigns: a systematic literature review. J. Inf. Technol. Politics 13(1), 72–91 (2016)CrossRefGoogle Scholar
  15. 15.
    Jungherr, A., Jürgens, P., Schoen, H.: Why the pirate party won the german election of 2009 or the trouble with predictions: a response to tumasjan, a., sprenger, to, sander, pg, & welpe, im “predicting elections with Twitter: What 140 characters reveal about political sentiment”. Soc. Sci. Comput. Rev. 30(2), 229–234 (2012)CrossRefGoogle Scholar
  16. 16.
    Llaneras, K.: Qué votantes cambiaron su voto el 26-j (2016). http://politica.elpais.com/politica/2016/07/22/ratio/1469195845_977293.html. Accessed 10 June 2017
  17. 17.
    Metaxas, P.T., Mustafaraj, E.: Social media and the elections. Science 338(6106), 472–473 (2012)CrossRefGoogle Scholar
  18. 18.
    Orriols, L., Cordero, G.: The breakdown of the Spanish two-party system: the upsurge of Podemos and Ciudadanos in the 2015 general election. South European Society and Politics 21(4), 469–492 (2016)CrossRefGoogle Scholar
  19. 19.
    Peña-López, I., Congosto, M., Aragón, P.: Spanish Indignados and the evolution of the 15M movement on Twitter: towards networked para-institutions. J. Span. Cult. Stud. 15(1–2), 189–216 (2014). http://dx.doi.org/10.1080/14636204.2014.931678 CrossRefGoogle Scholar
  20. 20.
    Simón, P.: The challenges of the new Spanish multipartism: government formation failure and the 2016 general election. South Eur. Soc. Polit. 21(4), 493–517 (2016)CrossRefGoogle Scholar
  21. 21.
    Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with Twitter: what 140 characters reveal about political sentiment. ICWSM 10(1), 178–185 (2010)Google Scholar
  22. 22.
    Vergeer, M., Hermans, L.: Campaigning on Twitter: microblogging and online social networking as campaign tools in the 2010 general elections in the Netherlands. J. Comput. Mediated Commun. 18(4), 399–419 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universitat Pompeu FabraBarcelonaSpain
  2. 2.Eurecat - Technology Center of CataloniaBarcelonaSpain

Personalised recommendations