Beyond the Culture Effect on Credibility Perception on Microblogs

  • Suliman AladhadhEmail author
  • Xiuzhen Zhang
  • Mark Sanderson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10540)


We investigated the credibility perception of tweet readers from the USA and by readers from eight Arabic countries; our aim was to understand if credibility was affected by country and/or by culture. Results from a crowd-sourcing experiment, showed a wide variety of factors affected credibility perception, including a tweet author’s gender, profile image, username style, location, and social network overlap with the reader. We found that culture determines readers’ credibility perception, but country has no effect. We discuss the implications of our findings for user interface design and social media systems.


Credibility Social media Microblog Culture 


  1. 1.
    Aladhadh, S., Zhang, X., Sanderson, M.: Tweet author location impacts on tweet credibility. In: Proceedings of the 2014 Australasian Document Computing Symposium, p. 73. ACM (2014)Google Scholar
  2. 2.
    Armstrong, C.L., McAdams, M.J.: Blogs of information: how gender cues and individual motivations influence perceptions of credibility. J. Comput.-Mediated Commun. 14(3), 435–456 (2009)CrossRefGoogle Scholar
  3. 3.
    Boididou, C., Papadopoulos, S., Kompatsiaris, Y., Schifferes, S., Newman, N.: Challenges of computational verification in social multimedia. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 743–748. ACM (2014)Google Scholar
  4. 4.
    Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM (2011)Google Scholar
  5. 5.
    Castillo, C., Mendoza, M., Poblete, B.: Predicting information credibility in time-sensitive social media. Int. Res. 23(5), 560–588 (2013)Google Scholar
  6. 6.
    Counts, S., Fisher, K.: Taking it all in? visual attention in microblog consumption. ICWSM 11, 97–104 (2011)Google Scholar
  7. 7.
    Dedoussis, E.: A cross-cultural comparison of organizational culture: evidence from universities in the arab world and Japan. Cross Cult. Manag. Int. J. 11(1), 15–34 (2004)CrossRefGoogle Scholar
  8. 8.
    Flanagin, A.J., Metzger, M.J.: The role of site features, user attributes, and information verification behaviors on the perceived credibility of web-based information. New Media Soc. 9(2), 319–342 (2007)CrossRefGoogle Scholar
  9. 9.
    Fogg, B., Marshall, J., Laraki, O., Osipovich, A., Varma, C., Fang, N., Paul, J., Rangnekar, A., Shon, J., Swani, P., et al.: What makes web sites credible?: a report on a large quantitative study. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 61–68. ACM (2001)Google Scholar
  10. 10.
    Freeman, K.S., Spyridakis, J.H.: An examination of factors that affect the credibility of online health information. Tech. Commun. 51(2), 239–263 (2004)Google Scholar
  11. 11.
    Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.: Cognos: crowdsourcing search for topic experts in microblogs. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 575–590. ACM (2012)Google Scholar
  12. 12.
    Google Social Search: Official Blog (2011).
  13. 13.
    Gottfried, B.Y.J., Shearer, E.: News Use Across Social Media Platforms 2016. Pew Research Center 2016 (2016)Google Scholar
  14. 14.
    Gupta, A., Kumaraguru, P.: Credibility ranking of tweets during high impact events. In: Proceedings of the 1st Workshop on Privacy and Security in Online Social Media, p. 2. ACM (2012)Google Scholar
  15. 15.
    Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: TweetCred: a real-time web-based system for assessing credibility of content on Twitter. In: Proceedings of 6th International Conference on Social Informatics (SocInfo), Barcelona, Spain (2014)Google Scholar
  16. 16.
    Han, B., Cook, P., Baldwin, T.: Text-based Twitter user geolocation prediction. J. Artif. Intell. Res. 49, 451–500 (2014)Google Scholar
  17. 17.
    Hofstede, G.: Cultures and Organizations: Software of the Mind (1991)Google Scholar
  18. 18.
    Hofstede, G.: Dimensionalizing cultures: the hofstede model in context. Online Readings Psychol. Cult. 2(1), 8 (2011)CrossRefGoogle Scholar
  19. 19.
    Hong, L., Convertino, G., Chi, E.H.: Language matters in twitter: a large scale study. In: ICWSM (2011)Google Scholar
  20. 20.
    Imran, M., Castillo, C.: Towards a data-driven approach to identify crisis-related topics in social media streams. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1205–1210. ACM (2015)Google Scholar
  21. 21.
    Kang, B., Höllerer, T., O’Donovan, J.: Believe it or not? analyzing information credibility in microblogs. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 611–616. ACM (2015)Google Scholar
  22. 22.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600. ACM (2010)Google Scholar
  23. 23.
    Morris, M., Counts, S., Roseway, A.: Tweeting is believing?: understanding microblog credibility perceptions. In: CSCW, pp. 441–450 (2012)Google Scholar
  24. 24.
    Mourad, A., Scholer, F., Sanderson, M.: Language influences on Tweeter geolocation. In: Jose, J.M., Hauff, C., Altıngovde, I.S., Song, D., Albakour, D., Watt, S., Tait, J. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 331–342. Springer, Cham (2017). doi: 10.1007/978-3-319-56608-5_26 CrossRefGoogle Scholar
  25. 25.
    Obeidat, B., Shannak, R., Masa’deh, R., Al-Jarrah, I.: Toward better understanding for arabian culture: implications based on hofstede’ s cultural model toward better understanding for arabian culture: implications based on hofstede’ s cultural model. Eur. J. Soc. Sci. 28(4), 512–522 (2012)Google Scholar
  26. 26.
    Olteanu, A., Vieweg, S., Castillo, C.: What to expect when the unexpected happens: social media communications across crises. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work and Social Computing, pp. 994–1009. ACM (2015)Google Scholar
  27. 27.
    Pal, A., Counts, S.: What’s in a@ name? how name value biases judgment of microblog authors. In: ICWSM (2011)Google Scholar
  28. 28.
    Poblete, B., Garcia, R., Mendoza, M., Jaimes, A.: Do all birds tweet the same?: characterizing twitter around the world. In: Proceedings of the 20th ACM CIKM International Conference on Information and Knowledge Management, pp. 1025–1030. ACM (2011)Google Scholar
  29. 29.
    Rosa, K.D., Shah, R., Lin, B., Gershman, A., Frederking, R.: Topical clustering of tweets. In: Proceedings of the ACM SIGIR: SWSM (2011)Google Scholar
  30. 30.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)Google Scholar
  31. 31.
    Schmierbach, M., Oeldorf-Hirsch, A.: A little bird told me, so i didn’t believe it: Twitter, credibility, and issue perceptions. Commun. Q. 60(3), 317–337 (2012)CrossRefGoogle Scholar
  32. 32.
    Wagner, C., Liao, V., Pirolli, P., Nelson, L., Strohmaier, M.: It’s not in their tweets: modeling topical expertise of twitter users. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom), pp. 91–100. IEEE (2012)Google Scholar
  33. 33.
    Weerkamp, W., Carter, S., Tsagkias, M.: How People use Twitter in Different Languages, vol. 1, p. 1 (2011)Google Scholar
  34. 34.
    Wilson, M.E.: Arabic speakers: language and culture, here and abroad. Top. Lang. Disord. 16(4), 65–80 (1996)CrossRefGoogle Scholar
  35. 35.
    Yang, J., Counts, S., Morris, M.R., Hoff, A.: Microblog credibility perceptions: comparing the USA and china. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work, pp. 575–586. ACM (2013)Google Scholar
  36. 36.
    Yang, J., Morris, M.R., Teevan, J., Adamic, L.A., Ackerman, M.S.: Culture matters: a survey study of social Q&A behavior. In: Fifth International AAAI Conference on Weblogs and Social Media (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Suliman Aladhadh
    • 1
    • 2
    Email author
  • Xiuzhen Zhang
    • 1
  • Mark Sanderson
    • 1
  1. 1.Computer Science, School of ScienceRMIT UniversityMelbourneAustralia
  2. 2.College of ComputerQassim UniversityBuraidahSaudi Arabia

Personalised recommendations