Effects of Contact Network Models on Stochastic Epidemic Simulations

  • Rehan Ahmad
  • Kevin S. Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10540)


The importance of modeling the spread of epidemics through a population has led to the development of mathematical models for infectious disease propagation. A number of empirical studies have collected and analyzed data on contacts between individuals using a variety of sensors. Typically one uses such data to fit a probabilistic model of network contacts over which a disease may propagate. In this paper, we investigate the effects of different contact network models with varying levels of complexity on the outcomes of simulated epidemics using a stochastic Susceptible-Infectious-Recovered (SIR) model. We evaluate these network models on six datasets of contacts between people in a variety of settings. Our results demonstrate that the choice of network model can have a significant effect on how closely the outcomes of an epidemic simulation on a simulated network match the outcomes on the actual network constructed from the sensor data. In particular, preserving degrees of nodes appears to be much more important than preserving cluster structure for accurate epidemic simulations.


Network model Stochastic epidemic model Contact network Degree-corrected stochastic block model 


  1. 1.
    aestetix, Petro, C.: CRAWDAD dataset hope/amd, 07 August 2008 (2008).
  2. 2.
    Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fMRI: Investigating and shaping social mechanisms in the real world. Pervasive Mob. Comput. 7(6), 643–659 (2011)CrossRefGoogle Scholar
  3. 3.
    Bioglio, L., Génois, M., Vestergaard, C.L., Poletto, C., Barrat, A., Colizza, V.: Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings. BMC Infect. Dis. 16(1), 676 (2016)CrossRefGoogle Scholar
  4. 4.
    Britton, T.: Stochastic epidemic models: a survey. Math. Biosci. 225(1), 24–35 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. 99(25), 15879–15882 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eames, K.: Modeling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol. 73(1), 104–111 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fournet, J., Barrat, A.: Contact patterns among high school students. PLoS ONE 9(9), e107878 (2014)CrossRefGoogle Scholar
  8. 8.
    Gemmetto, V., Barrat, A., Cattuto, C.: Mitigation of infectious disease at school: targeted class closure vs school closure. BMC Infect. Dis. 14(1), 695 (2014)CrossRefGoogle Scholar
  9. 9.
    Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical network models. Found. Trends Mach. Learn. 2(2), 129–233 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Greenwood, P., Gordillo, L.: Stochastic epidemic modeling. In: Chowell, G., Hyman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (eds.) Mathematical and Statistical Estimation Approaches in Epidemiology, pp. 31–52. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  11. 11.
    Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Isella, L., Stehl, J., Barrat, A., Cattuto, C., Pinton, J., Van den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jenness, S., Goodreau, S.M., Morris, M.: EpiModel: mathematical modeling of infectious disease (2017),
  14. 14.
    Jenness, S.M., Goodreau, S.M., Rosenberg, E., Beylerian, E.N., Hoover, K.W., Smith, D.K., Sullivan, P.: Impact of the centers for disease control’s HIV preexposure prophylaxis guidelines for men who have sex with men in the United States. J. Infect. Dis. 214(12), 1800–1807 (2016)CrossRefGoogle Scholar
  15. 15.
    Karimi, F., Holme, P.: Threshold model of cascades in empirical temporal networks. Phys. A 392(16), 3476–3483 (2013)CrossRefGoogle Scholar
  16. 16.
    Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Larson, R.C.: Simple models of influenza progression within a heterogeneous population. Eur. J. Oper. Res. 55(3), 399–412 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Machens, A., Gesualdo, F., Rizzo, C., Tozzi, A.E., Barrat, A., Cattuto, C.: An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices. BMC Infect. Dis. 13(1), 185 (2013)CrossRefGoogle Scholar
  20. 20.
    Marin, R.C., Dobre, C., Xhafa, F.: Exploring predictability in mobile interaction. In: Proceedings of the 3rd International Conference on Emerging Intelligent Data and Web Technologies, pp. 133–139 (2012)Google Scholar
  21. 21.
    Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Qin, T., Rohe, K.: Regularized spectral clustering under the degree-corrected stochastic blockmodel. In: Advances in Neural Information Processing Systems, vol. 26, pp. 3120–3128 (2013)Google Scholar
  23. 23.
    Smieszek, T.: A mechanistic model of infection: why duration and intensity of contacts should be included in models of disease spread. Theor. Biol. Med. Model. 6(1), 25 (2009)CrossRefGoogle Scholar
  24. 24.
    Smieszek, T., Fiebig, L., Scholz, R.W.: Models of epidemics: when contact repetition and clustering should be included. Theor. Biol. Med. Model. 6(1), 11 (2009)CrossRefGoogle Scholar
  25. 25.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., Régis, C., Pinton, J.F., Khanafer, N., Van den Broeck, W., Vanhems, P.: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 9(1), 87 (2011)CrossRefGoogle Scholar
  26. 26.
    Xu, K.S., Hero III, A.O.: Dynamic stochastic blockmodels for time-evolving social networks. IEEE J. Sel. Top. Sign. Process. 8(4), 552–562 (2014)CrossRefGoogle Scholar
  27. 27.
    Zhu, Y., Yan, X., Moore, C.: Oriented and degree-generated block models: generating and inferring communities with inhomogeneous degree distributions. J. Complex Netw. 2(1), 1–18 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.EECS DepartmentUniversity of ToledoToledoUSA

Personalised recommendations