Skip to main content

A Versatile Hardware and Software Toolset for Computer Aided Inspection Planning of Machine Vision Applications

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 655)


The digital workflow and the set of tools described in this article support machine vision engineering during specification, design and implementation in numerous ways. In addition to the core idea of cad based vision system development, a generic data container format, simulation tools for real-time and photorealistic rendering using measured material BRDF data, and a MATLAB/ROS-controlled two-lightweight robot setup for experimental verification of simulation results are presented as parts of a semi-automatic planning process for a laser triangulation system. The planning process includes the annotation of CAD data with GD&T tolerance information using the ISO/PWI 10303-238 (STEP-NC) standard, initial system configuration by a machine vision expert, image formation simulation, system performance evaluation based on metrics applied on synthetic images and the capturing of real images with camera and laser light source, each mounted to a 7-axis KUKA LWR IV lightweight robot. The economic benefits of time and cost reduction of machine vision system planning are discussed as well as drawbacks and limits of the suggested workflow and tools.


  • Machine vision
  • Optical inspection
  • CAD based vision
  • CAD based inspection planning
  • Sensor planning
  • Virtual vision
  • Simulation

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67220-5_30
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-67220-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1.


  1. Cowan, C.K., Kovesi, P.D.: Automatic sensor placement from vision task requirements. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 407–416 (1988). doi:10.1109/34.3905

  2. Al-Ahmari, A.M., Nasr, E.A., Abdulhameed, O. (eds.) Computer-Aided Inspection Planning: Theory and Practice. Taylor & Francis, CRC Press, Boca Raton (2017)

    Google Scholar 

  3. Tarabanis, K., Tsai, R.Y., Allen, P.K.: Overview of the MVP sensor planning system for robotic vision tasks. In: Tzafestas, S.G. (ed.) Engineering Systems with Intelligence. Springer Netherlands, Dordrecht, pp. 285–293 (1991)

    Google Scholar 

  4. Sakane, S., Ish, M., Kakikura, M.: Occlusion avoidance of visual sensors based on a hand-eye action simulator system: HEAVEN. Adv. Robot. 2(2), 149–165 (1987). doi:10.1163/156855387X00138

  5. Heitz, E., Hanika, J., d’Eon, E., et al.: Multiple-scattering microfacet BSDFs with the smith model. ACM Trans. Graph. 35(4), 1–14 (2016). doi:10.1145/2897824.2925943

  6. Tarabanis, K., Allen, P., Tsai, R.: A survey of sensor planning in computer vision. IEEE Trans. Robot. Autom. 11(1), 86–104 (1995). doi:10.1109/70.345940

  7. Cowan, C.K.: Model-based synthesis of sensor location. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 900–905 (1988)

    Google Scholar 

  8. Novini, A.R.: The lighting and optics expert system for machine vision. In: Proceedings of 29th Congress of ISPRS (1988)

    Google Scholar 

  9. Burla, A., Haist, T., Lyda, W., et al. An assistance system for the selection of sensors in multi-scale measurement systems. In: Furlong, C., Gorecki, C., Novak, E.L. (eds.) SPIE Optical Engineering + Applications. SPIE, 77910I (2010)

    Google Scholar 

  10. Gronle, M., Osten, W.: View and sensor planning for multi-sensor surface inspection. Surf. Topogr.: Metrol. Prop. 4(2), 024009 (2016). doi:10.1088/2051-672X/4/2/024009

  11. Khawaja, K., Maciejewski, A., Tretter, D., et al. Camera and light placement for automated assembly inspection. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3246–3252 (1996)

    Google Scholar 

  12. Lanzetta, M., Santochi, M., Tantussi, G.: Computer-aided visual inspection in assembly. CIRP Ann. Manuf. Technol. 48(1), 13–16 (1999). doi:10.1016/S0007-8506(07)63121-7

  13. Reiner, J.: Rendering for machine vision prototyping. Opt. Des. Eng. III 7100(1), 710009 (2008)

    CrossRef  Google Scholar 

  14. Yang, H., Haist, T., Gronle, M., et al.: Realistic simulation of camera images of local surface defects in the context of multi-sensor inspection systems. In: Lehmann, P., Osten, W., Albertazzi Gonçalves, A. (eds.) SPIE Optical Metrology. SPIE, pp. 9525221–9525226 (2015)

    Google Scholar 

  15. Meister, S., Kondermann, D.: Real versus realistically rendered scenes for optical flow evaluation. In: 2011 14th ITG Conference on Electronic Media Technology, pp. 1–6 (2011)

    Google Scholar 

  16. Retzlaff, M.-G., Stabenow. J., Dachsbacher. C.: Synthetic image acquisition and procedural modeling for automated optical inspection (AOI) systems. In: Puente León, F. (ed.) Forum Bildverarbeitung 2014, pp. 47–59. KIT Scientific Publishing, Karlsruhe (2014)

    Google Scholar 

  17. Höpe, A., Hauer, K.-O.: Three-dimensional appearance characterization of diffuse standard reflection materials. Metrologia 47(3), 295 (2010)

    Google Scholar 

  18. Holzschuch, N., Pacanowski, R.: A physically-based reflectance model combining reflection and diffraction. Research Report (2016)

    Google Scholar 

  19. Jakob, W.: Mitsuba 0.5.0 Documentation (2014)

    Google Scholar 

  20. Irgenfried, S., Wörn, H., Bergmann, S., et al.: CAD-basierter workflow für den semi-automatischen Entwurf optischer Inspektionssysteme. at - Automatisierungstechnik 65(6), 426–439 (2017). doi:10.1515/auto-2017-0044

  21. Mohammadikaji, M., Bergmann, S., Irgenfried, S., et al.: A framework for uncertainty propagation in 3D shape measurement using laser triangulation. In: 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, pp. 1–6 (2016)

    Google Scholar 

  22. Mohammadikaji, M., Bergmann, S., Irgenfried, S., et al.: Performance characterization in automated optical inspection using CAD models and graphical simulations. In: Zimmermann, S. (ed.) XXX. Messtechnisches Symposium. De Gruyter, Berlin, Boston (2016)

    Google Scholar 

  23. Mohammadikaji, M., Bergmann, S., Irgenfried, S., et al. Probabilistic surface inference for industrial inspection planning. In: 2017 IEEE Winter Conference on Applications of Computer Vision, pp. 1008–1016. IEEE (2017)

    Google Scholar 

Download references


This research was funded by the German Research Foundation DFG as part of the project “ASP-Sim – Interaktives Computergrafik-basiertes Rapid Prototyping der Bilderfassung für die Automatische Sichtprüfung”.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephan Irgenfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Irgenfried, S., Wörn, H., Bergmann, S., Mohammadikajii, M., Beyerer, J., Dachsbacher, C. (2018). A Versatile Hardware and Software Toolset for Computer Aided Inspection Planning of Machine Vision Applications. In: Borzemski, L., Świątek, J., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017. ISAT 2017. Advances in Intelligent Systems and Computing, vol 655. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67219-9

  • Online ISBN: 978-3-319-67220-5

  • eBook Packages: EngineeringEngineering (R0)