Why Groups Show Different Fairness Norms? The Interaction Topology Might Explain

  • Mohsen MoslehEmail author
  • Babak HeydariEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10539)


Computational models of prosocial norms are becoming important from the perspective of theoretical social sciences as well as engineering of autonomous systems, who also need to show prosocial behavior in their social interactions. Fairness, as one of the strongest prosocial norms has long been argued to govern human behavior in a wide range of social, economic, and organizational activities. The sense of fairness, although universal, varies across different societies. In this study, using a computational model based on evolutionary games on graphs, we demonstrate emergence of fair behavior in structured interaction of rational agents and test the hypothesis that the network structure of social interaction can causally explain some of the cross-societal variations in fairness norms, as previously reported by empirical studies. We show that two network parameters, community structure, as measured by the modularity index, and network hubiness, represented by the skewness of degree distribution, have the most significant impact on emergence of fairness norms. These two parameters can explain much of the variations in fairness norms across societies and can also be linked to hypotheses suggested by earlier empirical work. We devised a multi-layered model that combines local agent interactions with social learning, thus enables both strategic behavior as well as diffusion of successful strategies. We also discuss some generalizable methods that are used in the selection of network structures and convergence criteria used in simulations for work. By applying multivariate statistics on the results, we obtain the relation between network structural features and the collective fair behavior.


Social norms Fairness Social network Ultimatum game 



This work is in part supported by the National Science Foundation (NSF) under Grant No. CMMI-1548521. Authors are grateful to David Gianetto for the insightful comments on the computational framework.


  1. 1.
    Lin, P.: Why ethics matters for autonomous cars. In: Maurer, M., Gerdes, J., Lenz, B., Winner, H. (eds.) Autonomous Driving, pp. 69–85. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-45854-9_4 Google Scholar
  2. 2.
    Goodall, N.J.: Can you program ethics into a self-driving car? IEEE Spectr. 53(6), 28–58 (2016)CrossRefGoogle Scholar
  3. 3.
    Roth, A.E., Sönmez, T., Ünver, M.U.: Kidney exchange. Q. J. Econ. 119(2), 457–488 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Sigmund, K.: The Calculus of Selfishness. Princeton University Press, Princeton (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Szabó, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446(4), 97–216 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fehr, E., Fischbacher, U.: Third-party punishment and social norms. Evol. Hum. Behav. 25(2), 63–87 (2004)CrossRefGoogle Scholar
  7. 7.
    Page, K.M., Nowak, M.A., Sigmund, K.: The spatial ultimatum game. Proc. R. Soc. Lond. B: Biol. Sci. 267(1458), 2177–2182 (2000)CrossRefGoogle Scholar
  8. 8.
    Killingback, T., Studer, E.: Spatial ultimatum games, collaborations and the evolution of fairness. Proc. R. Soc. Lond. B: Biol. Sci. 268(1478), 1797–1801 (2001)CrossRefGoogle Scholar
  9. 9.
    Mosleh, M., Heydari, B.: Fair topologies: community structures and network hubs drive emergence of fairness norms. Sci. Rep. 7 (2017). doi: 10.1038/s41598-017-01876-0
  10. 10.
    Clark, A.E., Oswald, A.J.: Satisfaction and comparison income. J. Public Econ. 61(3), 359–381 (1996)CrossRefGoogle Scholar
  11. 11.
    Luttmer, E.F.P.: Neighbors as negatives: relative earnings and well-being. Q. J. Econ. 120(3), 963–1002 (2005)Google Scholar
  12. 12.
    Marmot, M.: Status syndrome. Significance 1(4), 150–154 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fliessbach, K., Weber, B., Trautner, P., Dohmen, T., Sunde, U., Elger, C.E., Falk, A.: Social comparison affects reward-related brain activity in the human ventral striatum. Science 318(5854), 1305–1308 (2007)CrossRefGoogle Scholar
  14. 14.
    Kahneman, D., Knetsch, J.L., Thaler, R.H.: Fairness and the assumptions of economics. J. Bus. 59, S285–S300 (1986)CrossRefGoogle Scholar
  15. 15.
    Thaler, R.H.: Anomalies: the ultimatum game. J. Econ. Perspect. 2(4), 195–206 (1988)CrossRefGoogle Scholar
  16. 16.
    Rabin, M.: Incorporating fairness into game theory and economics. Am. Econ. Rev. 83, 1281–1302 (1993)Google Scholar
  17. 17.
    Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., McElreath, R.: In search of homo economicus: behavioral experiments in 15 small-scale societies. Am. Econ. Rev. 91(2), 73–78 (2001)CrossRefGoogle Scholar
  18. 18.
    Blake, P.R., McAuliffe, K., Corbit, J., Callaghan, T.C., Barry, O., Bowie, A., Kleutsch, L., Kramer, K.L., Ross, E., Vongsachang, H., et al.: The ontogeny of fairness in seven societies. Nature 528, 258–261 (2015)CrossRefGoogle Scholar
  19. 19.
    Lamba, S., Mace, R.: The evolution of fairness: explaining variation in bargaining behaviour. Proc. R. Soc. Lond. B: Biol. Sci. 280(1750), 20122028 (2013)CrossRefGoogle Scholar
  20. 20.
    Schminke, M., Cropanzano, R., Rupp, D.E.: Organization structure and fairness perceptions: the moderating effects of organizational level. Organ. Behav. Hum. Decis. Process. 89(1), 881–905 (2002)CrossRefGoogle Scholar
  21. 21.
    Schminke, M., Ambrose, M.L., Cropanzano, R.S.: The effect of organizational structure on perceptions of procedural fairness. J. Appl. Psychol. 85(2), 294 (2000)CrossRefGoogle Scholar
  22. 22.
    Lamertz, K.: The social construction of fairness: social influence and sense making in organizations. J. Organ. Behav. 23(1), 19–37 (2002)CrossRefGoogle Scholar
  23. 23.
    Paciotti, B., Hadley, C.: The ultimatum game in southwestern tanzania: ethnic variation and institutional scope 1. Curr. Anthropol. 44(3), 427–432 (2003)CrossRefGoogle Scholar
  24. 24.
    Chuah, S.-H., Hoffmann, R., Jones, M., Williams, G.: Do cultures clash? Evidence from cross-national ultimatum game experiments. J. Econ. Behav. Organ. 64(1), 35–48 (2007)CrossRefGoogle Scholar
  25. 25.
    Oosterbeek, H., Sloof, R., Van De Kuilen, G.: Cultural differences in ultimatum game experiments: evidence from a meta-analysis. Exp. Econ. 7(2), 171–188 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Roth, A.E., Prasnikar, V., Okuno-Fujiwara, M., Zamir, S.: Bargaining and market behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokyo: an experimental study. Am. Econ. Rev. 81, 1068–1095 (1991)Google Scholar
  27. 27.
    Roth, A.E.: Bargening experiments (chapter 4). In: Kagel, J.H., Roth, A.E. (eds.) The Handbook of Experimental Economics, pp. 253–348. Princeton University Press, Princeton (1995)Google Scholar
  28. 28.
    Buchan, N.R., Croson, R.T.A., Johnson, E.J.: When do fair beliefs influence bargaining behavior? Experimental bargaining in Japan and the United States. J. Consum. Res. 31(1), 181–190 (2004)CrossRefGoogle Scholar
  29. 29.
    Inglehart, R.: Culture and democracy. In: Culture Matters: How Values Shape Human Progress, pp. 80–97 (2000)Google Scholar
  30. 30.
    Hofstede, G.: Cultures and Organizations: Software of the Mind, vol. 1. McGraw-Hill, New York (1991)Google Scholar
  31. 31.
    Henrich, J., Ensminger, J., McElreath, R., Barr, A., Clark, B., Bolyanatz, A., Cardenas, J.C., Gurven, M., Gwako, E., Henrich, N., et al.: Markets, religion, community size, and the evolution of fairness and punishment. Science 327(5972), 1480–1484 (2010)CrossRefGoogle Scholar
  32. 32.
    van Damme, E., Binmore, K.G., Roth, A.E., Samuelson, L., Winter, E., Bolton, G.E., Ockenfels, A., Dufwenberg, M., Kirchsteiger, G., Gneezy, U., et al.: How Werner Güth’s ultimatum game shaped our understanding of social behavior. J. Econ. Behav. Organ. 108, 292–318 (2014)CrossRefGoogle Scholar
  33. 33.
    Skyrms, B.: Evolution of the Social Contract. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  34. 34.
    Henrich, J., McElreath, R., Barr, A., Ensminger, J., Clark, B., Bolyanatz, A., Cardenas, J.C., Gurven, M., Gwako, E., Henrich, N., et al.: Costly punishment across human societies. Science 312(5781), 1767–1770 (2006)CrossRefGoogle Scholar
  35. 35.
    Güth, W., Kocher, M.G.: More than thirty years of ultimatum bargaining experiments: motives, variations, and a survey of the recent literature. J. Econ. Behav. Organ. 108, 396–409 (2014)CrossRefGoogle Scholar
  36. 36.
    Straub, P.G., Murnighan, J.K.: An experimental investigation of ultimatum games: information, fairness, expectations, and lowest acceptable offers. J. Econ. Behav. Organ. 27(3), 345–364 (1995)CrossRefGoogle Scholar
  37. 37.
    Rand, D.G., Nowak, M.A., Fowler, J.H., Christakis, N.A.: Static network structure can stabilize human cooperation. Proc. Natl. Acad. Sci. 111(48), 17093–17098 (2014)CrossRefGoogle Scholar
  38. 38.
    Nishi, A., Shirado, H., Rand, D.G., Christakis, N.A.: Inequality and visibility of wealth in experimental social networks. Nature 526(7573), 426–429 (2015)CrossRefGoogle Scholar
  39. 39.
    Mason, W., Watts, D.J.: Collaborative learning in networks. Proc. Natl. Acad. Sci. 109(3), 764–769 (2012)CrossRefGoogle Scholar
  40. 40.
    Rand, D.G., Tarnita, C.E., Ohtsuki, H., Nowak, M.A.: Evolution of fairness in the one-shot anonymous ultimatum game. Proc. Natl. Acad. Sci. 110(7), 2581–2586 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Gianetto, D.A., Heydari, B.: Network modularity is essential for evolution of cooperation under uncertainty. Sci. Rep. 5, 9340 (2015)CrossRefGoogle Scholar
  42. 42.
    Wu, T., Fu, F., Zhang, Y., Wang, L.: Adaptive role switching promotes fairness in networked ultimatum game. Sci. Rep. 3, 1550 (2013)CrossRefGoogle Scholar
  43. 43.
    Duan, W.-Q., Stanley, H.E.: Fairness emergence from zero-intelligence agents. Phys. Rev. E 81(2), 026104 (2010)CrossRefGoogle Scholar
  44. 44.
    Heydari, B., Dalili, K.: Emergence of modularity in system of systems: complex networks in heterogeneous environments. IEEE Syst. J. 9(1), 223–231 (2015)CrossRefGoogle Scholar
  45. 45.
    Gianetto, D.A., Heydari, B.: Sparse cliques trump scale-free networks in coordination and competition. Sci. Rep. 6, 21870 (2016)CrossRefGoogle Scholar
  46. 46.
    Wagner, C.S., Leydesdorff, L.: Network structure, self-organization, and the growth of international collaboration in science. Res. Policy 34(10), 1608–1618 (2005)CrossRefGoogle Scholar
  47. 47.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Qian, L., Chunshan, X., Liu, H.: Can chunking reduce syntactic complexity of natural languages? Complexity 21(S2), 33–41 (2016)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Cancho, R.F.-i.: Hubiness, length, crossings and their relationships in dependency trees. arXiv preprint arXiv:1304.4086 (2013)
  50. 50.
    Kunegis, J., Blattner, M., Moser, C.: Preferential attachment in online networks: measurement and explanations. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 205–214. ACM (2013)Google Scholar
  51. 51.
    Barabási, A.-L.: Network science (2016)Google Scholar
  52. 52.
    Heydari, B., Mosleh, M., Dalili, K.: Efficient network structures with separable heterogeneous connection costs. Econ. Lett. 134, 82–85 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Heydari, P., Mosleh, M., Heydari, B.: Efficient integration in multi-community networks. In: Working Paper (2017). SSRN
  54. 54.
    Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae. CRC Press, Boca Raton (1999)CrossRefzbMATHGoogle Scholar
  55. 55.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  56. 56.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  57. 57.
    Sinatra, R., Iranzo, J., Gomez-Gardenes, J., Floria, L.M., Latora, V., Moreno, Y.: The ultimatum game in complex networks. J. Stat. Mech: Theory Exp. 2009(09), P09012 (2009)CrossRefGoogle Scholar
  58. 58.
    Kuperman, M.N., Risau-Gusman, S.: The effect of the topology on the spatial ultimatum game. Eur. Phys. J. B 62(2), 233–238 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Graph topology plays a determinant role in the evolution of cooperation. Proc. R. Soc. Lond. B: Biol. Sci. 273(1582), 51–55 (2006)CrossRefGoogle Scholar
  60. 60.
    Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95(9), 098104 (2005)CrossRefGoogle Scholar
  61. 61.
    Gómez-Gardenes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Phys. Rev. Lett. 98(10), 108103 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Stevens Institute of TechnologyHobokenUSA

Personalised recommendations