Seeds Buffering for Information Spreading Processes

  • Jarosław Jankowski
  • Piotr Bródka
  • Radosław Michalski
  • Przemysław Kazienko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10539)

Abstract

Seeding strategies for influence maximization in social networks have been studied for more than a decade. They have mainly relied on the activation of all resources (seeds) simultaneously in the beginning; yet, it has been shown that sequential seeding strategies are commonly better. This research focuses on studying sequential seeding with buffering, which is an extension to basic sequential seeding concept. The proposed method avoids choosing nodes that will be activated through the natural diffusion process, which is leading to better use of the budget for activating seed nodes in the social influence process. This approach was compared with sequential seeding without buffering and single stage seeding. The results on both real and artificial social networks confirm that the buffer-based consecutive seeding is a good trade-off between the final coverage and the time to reach it. It performs significantly better than its rivals for a fixed budget. The gain is obtained by dynamic rankings and the ability to detect network areas with nodes that are not yet activated and have high potential of activating their neighbours.

Keywords

Social network Social network analysis Spread of influence Diffusion Seed selection Sequential seeding 

References

  1. 1.
    Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International Workshop on Link discovery, pp. 36–43. ACM (2005)Google Scholar
  2. 2.
    Bulut, E., Wang, Z., Szymanski, B.: Cost-effective multiperiod spraying for routing in delay-tolerant networks. IEEE/ACM Trans. Netw. 18(5), 1530–1543 (2010)CrossRefGoogle Scholar
  3. 3.
    Ghosh, B.K., Sen, P.K. (eds.): Handbook of sequential analysis. In: Statistics, Textbooks and Monographs. Marcel Dekker, New York (1991)Google Scholar
  4. 4.
    Jakab, G.J.: Sequential virus infections, bacterial superinfections, and fibrogenesis. Am. Rev. Respir. Dis. 142(2), 374–9 (1990)CrossRefGoogle Scholar
  5. 5.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  6. 6.
    Horel, T., Singer, Y.: Scalable methods for adaptively seeding a social network. In: Proceedings of the 24th International Conference on World Wide Web, pp. 441–451. ACM (2015)Google Scholar
  7. 7.
    Jankowski, J., Bródka, P., Kazienko, P., Szymanski, B., Michalski, R., Kajdanowicz, T.: Balancing speed and coverage by sequential seeding in complex networks. arXiv preprint (2016). arXiv:1609.07526
  8. 8.
    Jankowski, J., Kozielski, M., Filipowski, W., Michalski, R.: The diffusion of viral content in multi-layered social networks. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 30–39. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40495-5_4 CrossRefGoogle Scholar
  9. 9.
    Jankowski, J., Michalski, R., Kazienko, P.: Compensatory seeding in networks with varying availability of nodes. In: The 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining - ASONAM 2013, pp. 1242–1249. IEEE (2013)Google Scholar
  10. 10.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003)Google Scholar
  11. 11.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11(4), 105–147 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)CrossRefGoogle Scholar
  13. 13.
    Kumar, A., Lifson, J.D., Li, Z., Jia, F., Mukherjee, S., Adany, I., Liu, Z., Piatak, M., Sheffer, D., McClure, H.M., Narayan, O.: Sequential immunization of macaques with two differentially attenuated vaccines induced long-term virus-specific immune responses and conferred protection against AIDS caused by heterologous simian human immunodeficiency virus (shiv89.6p). Virology 279(1), 241–256 (2001)CrossRefGoogle Scholar
  14. 14.
    de Lange, F.P., Jensen, O., Dehaene, S.: Accumulation of evidence during sequential decision making: the importance of top-down factors. J. Neurosci.: Off. J. Soc. Neurosci. 30(2), 731–738 (2010)CrossRefGoogle Scholar
  15. 15.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp. 1361–1370. ACM (2010)Google Scholar
  16. 16.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)CrossRefGoogle Scholar
  17. 17.
    Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)Google Scholar
  18. 18.
    Liu-Thompkins, Y.: Seeding viral content : the role of message and network factors (2012)Google Scholar
  19. 19.
    Michalski, R., Kajdanowicz, T., Bródka, P., Kazienko, P.: Seed selection for spread of influence in social networks: temporal vs. static approach. New Gener. Comput. 32(3–4), 213–235 (2014)CrossRefGoogle Scholar
  20. 20.
    Michalski, R., Kazienko, P.: Maximizing social influence in real-world networks—the state of the art and current challenges. In: Król, D., Fay, D., Gabryś, B. (eds.) Propagation Phenomena in Real World Networks. ISRL, vol. 85, pp. 329–359. Springer, Cham (2015). doi:10.1007/978-3-319-15916-4_14 Google Scholar
  21. 21.
    Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65–68 (2015)CrossRefGoogle Scholar
  22. 22.
    Newman, M.E.: The structure of scientific collaboration networks. Proc. Nat. Acad. Sci. 98(2), 404–409 (2001)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Opsahl, T.: Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Soc. Netw. 35(2), 159–167 (2013)CrossRefGoogle Scholar
  25. 25.
    Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)CrossRefGoogle Scholar
  26. 26.
    Price, W.H.: Sequential immunization as a vaccination procedure against dengue viruses. Am. J. Epidemiol. 88(3), 392–397 (1968)CrossRefGoogle Scholar
  27. 27.
    Seeman, L., Singer, Y.: Adaptive seeding in social networks. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 459–468. IEEE (2013)Google Scholar
  28. 28.
    Sela, A., Ben-Gal, I., Pentland, A., Shmueli, E.: Improving information spread through a scheduled seeding approach. In: The international conference on Advances in Social Network Analysis and Mining 2015 (2015)Google Scholar
  29. 29.
    Siegmund, D.: Sequential Analysis : Tests and Confidence Intervals. Springer Series in Statistics. Springer-Verlag, New York (1985)CrossRefMATHGoogle Scholar
  30. 30.
    Sridhar, S., Mantrala, M.K., Naik, P.A., Thorson, E.: Dynamic marketing budgeting for platform firms: theory, evidence, and application. J. Mark. Res. 48(6), 929–943 (2011)CrossRefGoogle Scholar
  31. 31.
    Wald, A.: Sequential Analysis. Wiley, Hoboken (1947)MATHGoogle Scholar
  32. 32.
    Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent cascade model in large-scale social networks. Data Min. Knowl. Discov. 25(3), 545–576 (2012)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)CrossRefMATHGoogle Scholar
  34. 34.
    Zhang, H., Procaccia, A.D., Vorobeychik, Y.: Dynamic influence maximization under increasing returns to scale. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 949–957. International Foundation for Autonomous Agents and Multiagent Systems (2015)Google Scholar
  35. 35.
    Zhang, J.X., Duan-Bing Chen, Q.D., Zhao, Z.D.: Identifying a set of influential spreaders in complex networks. Sci. Rep. 6 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jarosław Jankowski
    • 1
  • Piotr Bródka
    • 2
  • Radosław Michalski
    • 2
  • Przemysław Kazienko
    • 2
  1. 1.Faculty of Computer Science for Information TechnologyWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Department of Computational IntelligenceWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations