An Analysis of Individuals’ Behavior Change in Online Groups

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10539)


Many online platforms support social functions that enable their members to communicate, befriend, and join groups with one another. These social engagements are known to shape individuals’ future behavior. However, most work has focused solely on how peers influence behavior and little is known what additional role online groups play in changing behavior. We investigate the capacity for group membership to lead users to change their behavior in three settings: (1) selecting physical activities, (2) responding to help requests, and (3) remaining active on the platform. To do this, we analyze nearly half a million users over five years from a popular fitness-focused social media platform whose unique affordances allow us to precisely control for the effects of social ties, user demographics, and communication. We find that after joining a group, users readily adopt the exercising behavior seen in the group, regardless of whether the group was exercise and non-exercise themed, and this change is not explained by the influence of pre-existing social ties. Further, we find that the group setting equalizes the social status of individuals such that lower status users still receive responses to requests. Finally, we find, surprisingly, that the number of groups one joins is negatively associated with user retention, when controlling for other behavioral and social factors.


Online Group User Retention Exercise Behavior User Demographics Join Groups 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the reviewers for their insightful and detailed comments, with special thanks to Reviewer 3 for their nuanced analysis. The first author would also like to thank Tim Althoff, Will Hamilton, and Jure Leskovec for their helpful discussion and feedback. Finally, we thank the Fitocracy developers for creating their platform and making it accessible to all.


  1. 1.
    Alstott, J., Bullmore, E., Plenz, D.: Powerlaw: a python package for analysis of heavy-tailed distributions. PLoS ONE 9(1), e85777 (2014)CrossRefGoogle Scholar
  2. 2.
    Althoff, T., Danescu-Niculescu-Mizil, C., Jurafsky, D.: How to ask for a favor: a case study on the success of altruistic requests. In: ICWSM (2014)Google Scholar
  3. 3.
    Althoff, T., Jindal, P., Leskovec, J.: Online actions with offline impact: how online social networks influence online and offline user behavior. In: WSDM (2017)Google Scholar
  4. 4.
    Andersson, L.M., Pearson, C.M.: Tit for tat? the spiraling effect of incivility in the workplace. Acad. Manag. Rev. 24(3), 452–471 (1999)Google Scholar
  5. 5.
    Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Nat. Acad. Sci. 106(51), 21544–21549 (2009)CrossRefGoogle Scholar
  6. 6.
    Aral, S., Nicolaides, C.: Exercise contagion in a global social network. Nat. Commun. 8 (2017).
  7. 7.
    Artstein, R., Poesio, M.: Inter-coder agreement for computational linguistics. Comput. Linguist. 34(4), 555–596 (2008)CrossRefGoogle Scholar
  8. 8.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: KDD (2006)Google Scholar
  9. 9.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: WWW (2012)Google Scholar
  10. 10.
    Bauman, A.E., Sallis, J.F., Dzewaltowski, D.A., Owen, N.: Toward a better understanding of the influences on physical activity: the role of determinants, correlates, causal variables, mediators, moderators, and confounders. Am. J. Prev. Med. 23(2), 5–14 (2002)CrossRefGoogle Scholar
  11. 11.
    Van den Berg, M.H., Schoones, J.W., Vlieland, T.P.V.: Internet-based physical activity interventions: a systematic review of the literature. J. Med. Int. Res. 9(3), e26 (2007)Google Scholar
  12. 12.
    Billig, M., Tajfel, H.: Social categorization and similarity in intergroup behaviour. Eur. J. Soc. Psychol. 3(1), 27–52 (1973)CrossRefGoogle Scholar
  13. 13.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Lear. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  14. 14.
    Budak, C., Agrawal, R.: On participation in group chats on twitter. In: WWW (2013)Google Scholar
  15. 15.
    Burke, M., Marlow, C., Lento, T.: Feed Me: motivating newcomer contribution in social network sites. In: CHI (2009)Google Scholar
  16. 16.
    Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936. ACM (2014)Google Scholar
  17. 17.
    Cheung, C.M., Chiu, P.Y., Lee, M.K.: Online social networks: why do students use facebook? Comput. Hum. Behav. 27(4), 1337–1343 (2011)CrossRefGoogle Scholar
  18. 18.
    Chilton, P.: Politeness, politics and diplomacy. Discourse Soc. 1(2), 201–224 (1990)CrossRefGoogle Scholar
  19. 19.
    Chou, H.T.G., Edge, N.: They are happier and having better lives than i am: the impact of using facebook on perceptions of others’ lives. Cyberpsychology Behav. Soc. Netw. 15(2), 117–121 (2012)CrossRefGoogle Scholar
  20. 20.
    Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Conroy, M., Feezell, J.T., Guerrero, M.: Facebook and political engagement: a study of online political group membership and offline political engagement. Comput. Hum. Behav. 28(5), 1535–1546 (2012)CrossRefGoogle Scholar
  22. 22.
    Cross, S., Markus, H.: Possible selves across the life span. Hum. Dev. 34(4), 230–255 (1991)CrossRefGoogle Scholar
  23. 23.
    Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., Potts, C.: A computational approach to politeness with application to social factors. In: ACL (2013)Google Scholar
  24. 24.
    Danescu-Niculescu-Mizil, C., West, R., Jurafsky, D., Leskovec, J., Potts, C.: No country for old members: user lifecycle and linguistic change in online communities. In: WWW (2013)Google Scholar
  25. 25.
    Dror, G., Pelleg, D., Rokhlenko, O., Szpektor, I.: Churn prediction in new users of yahoo! answers. In: WWW, pp. 829–834. ACM (2012)Google Scholar
  26. 26.
    Ducheneaut, N., Yee, N., Nickell, E., Moore, R.J.: Alone together?: exploring the social dynamics of massively multiplayer online games. In: CHI, pp. 407–416. ACM (2006)Google Scholar
  27. 27.
    Ellison, N.B., Gray, R., Vitak, J., Lampe, C., Fiore, A.T.: Calling all facebook friends: exploring requests for help on facebook. In: ICWSM (2013)Google Scholar
  28. 28.
    Garcia, D., Mavrodiev, P., Casati, D., Schweitzer, F.: Understanding popularity, reputation, and social influence in the twitter society. Policy Int. (2017).
  29. 29.
    Garcia, D., Mavrodiev, P., Schweitzer, F.: Social resilience in online communities: the autopsy of friendster. In: COSN (2013)Google Scholar
  30. 30.
    Goette, L., Huffman, D., Meier, S.: The impact of group membership on cooperation and norm enforcement: evidence using random assignment to real social groups. Am. Econ. Rev. 96(2), 212–216 (2006)CrossRefGoogle Scholar
  31. 31.
    Goh, D.H.-L., Razikin, K.: Is gamification effective in motivating exercise? In: Kurosu, M. (ed.) HCI 2015. LNCS, vol. 9170, pp. 608–617. Springer, Cham (2015). doi: 10.1007/978-3-319-20916-6_56 CrossRefGoogle Scholar
  32. 32.
    Gonzales, A.L., Hancock, J.T.: Mirror, mirror on my facebook wall: effects of exposure to facebook on self-esteem. Cyberpsychology Behav. Soc. Net. 14(1–2), 79–83 (2011)CrossRefGoogle Scholar
  33. 33.
    Gray, R., Ellison, N.B., Vitak, J., Lampe, C.: Who wants to know?: question-asking and answering practices among facebook users. In: CSCW (2013)Google Scholar
  34. 34.
    Hamari, J., Koivisto, J.: Social motivations to use gamification: an empirical study of gamifying exercise. In: ECIS, p. 105 (2013)Google Scholar
  35. 35.
    Hamari, J., Koivisto, J.: “Working out for likes”: an empirical study on social influence in exercise gamification. Comput. Hum. Behav. 50, 333–347 (2015)CrossRefGoogle Scholar
  36. 36.
    Harper, F.M., Raban, D., Rafaeli, S., Konstan, J.A.: Predictors of answer quality in online Q&A sites. In: CHI (2008)Google Scholar
  37. 37.
    Holmes, J., Stubbe, M., et al.: Power and Politeness in the Workplace: A Sociolinguistic Analysis of Talk at Work. Routledge, Abingdon (2015)Google Scholar
  38. 38.
    Horowitz, D., Kamvar, S.D.: The anatomy of a large-scale social search engine. In: WWW (2010)Google Scholar
  39. 39.
    Hyland, K.: Metadiscourse: Exploring Interaction in Writing. Continuum, London (2005)Google Scholar
  40. 40.
    Jeong, J.W., Morris, M.R., Teevan, J., Liebling, D.J.: A crowd-powered socially embedded search engine. In: ICWSM (2013)Google Scholar
  41. 41.
    Joyce, E., Kraut, R.E.: Predicting continued participation in newsgroups. J. Comput.-Mediat. Commun. 11(3), 723–747 (2006)CrossRefGoogle Scholar
  42. 42.
    Jung, Y., Gray, R., Lampe, C., Ellison, N.: Favors from facebook friends: unpacking dimensions of social capital. In: CHI, pp. 11–20. ACM (2013)Google Scholar
  43. 43.
    Jurgens, D., McCorriston, J., Ruths, D.: An analysis of exercising behavior in online populations. In: ICWSM (2015)Google Scholar
  44. 44.
    Kairam, S.R., Wang, D.J., Leskovec, J.: The life and death of online groups: predicting group growth and longevity. In: WSDM (2012)Google Scholar
  45. 45.
    Karnstedt, M., Rowe, M., Chan, J., Alani, H., Hayes, C.: The effect of user features on churn in social networks. In: WebScience (2011)Google Scholar
  46. 46.
    Kayes, I., Chakareski, J.: Retention in online blogging: a case study of the blogster community. IEEE Trans. Comput. Soc. Syst. 2(1), 1–14 (2015)CrossRefGoogle Scholar
  47. 47.
    Kelman, H.: Social influence and linkages between the individual and the social system: further thoughts on the processes of compliance, identification, and internalization. In: Tedeschi, J. (ed.) Perspectives on Social Power (1974)Google Scholar
  48. 48.
    Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. (JAIR) 50, 723–762 (2014)Google Scholar
  49. 49.
    Korda, H., Itani, Z.: Harnessing social media for health promotion and behavior change. Health Promot. Pract. 14(1), 15–23 (2013)CrossRefGoogle Scholar
  50. 50.
    Kumar, S., Zafarani, R., Liu, H.: Understanding user migration patterns in social media. In: AAAI (2011)Google Scholar
  51. 51.
    Lampe, C., Resnick, P.: Slash (dot) and burn: distributed moderation in a large online conversation space. In: CHI, pp. 543–550. ACM (2004)Google Scholar
  52. 52.
    Lampe, C., Vitak, J., Gray, R., Ellison, N.: Perceptions of facebook’s value as an information source. In: CHI (2012)Google Scholar
  53. 53.
    Lento, T., Welser, H.T., Gu, L., Smith, M.: The ties that blog: examining the relationship between social ties and continued participation in the wallop weblogging system. In: WWW (2006)Google Scholar
  54. 54.
    Li, H., Bhowmick, S.S., Sun, A.: CASINO: towards conformity-aware social influence analysis in online social networks. In: CIKM (2011)Google Scholar
  55. 55.
    Luczak-Roesch, M., Tinati, R., Simperl, E., Van Kleek, M., Shadbolt, N., Simpson, R.J.: Why won’t aliens talk to us? content and community dynamics in online citizen science. In: ICWSM (2014)Google Scholar
  56. 56.
    Ma, X., Chen, G., Xiao, J.: Analysis of an online health social network. In: Proceedings of the 1st ACM International Health Informatics Symposium, pp. 297–306. ACM (2010)Google Scholar
  57. 57.
    Maher, C.A., Lewis, L.K., Ferrar, K., Marshall, S., De Bourdeaudhuij, I., Vandelanotte, C.: Are health behavior change interventions that use online social networks effective? a systematic review. J. Med. Int. Res. 16(2), e40 (2014)Google Scholar
  58. 58.
    Marcus, B.H., Selby, V.C., Niaura, R.S., Rossi, J.S.: Self-efficacy and the stages of exercise behavior change. Res. Q. Exerc. Sport 63(1), 60–66 (1992)CrossRefGoogle Scholar
  59. 59.
    Michael, L., Otterbacher, J.: Write like i write: herding in the language of online reviews. In: ICWSM (2014)Google Scholar
  60. 60.
    Mohammad, S.M., Kiritchenko, S.: Using hashtags to capture fine emotion categories from tweets. Comput. Intell. 31(2), 301–326 (2015)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Morris, M.R., Teevan, J., Panovich, K.: A comparison of information seeking using search engines and social networks. In: ICWSM (2010)Google Scholar
  62. 62.
    Morris, M.R., Teevan, J., Panovich, K.: What do people ask their social networks, and why?: a survey study of status message q&a behavior. In: CHI (2010)Google Scholar
  63. 63.
    Muise, A., Christofides, E., Desmarais, S.: More information than you ever wanted: does facebook bring out the green-eyed monster of jealousy? CyberPsychology behav. 12(4), 441–444 (2009)CrossRefGoogle Scholar
  64. 64.
    Nakhasi, A., Shen, A.X., Passarella, R.J., Appel, L.J., Anderson, C.A.: Online social networks that connect users to physical activity partners: a review and descriptive analysis. J. Med. Int. Res. 16(6), e153 (2014)Google Scholar
  65. 65.
    Newell, E., Jurgens, D., Saleem, H.M., Vala, H., Sassine, J., Armstrong, C., Ruths, D.: User migration in online social networks: a case study on reddit during a period of community unrest. In: ICWSM (2016)Google Scholar
  66. 66.
    Norman, G.J., Zabinski, M.F., Adams, M.A., Rosenberg, D.E., Yaroch, A.L., Atienza, A.A.: A review of ehealth interventions for physical activity and dietary behavior change. Am. J. Prev. Med. 33(4), 336–345 (2007)CrossRefGoogle Scholar
  67. 67.
    Paul, S.A., Hong, L., Chi, E.H.: Is twitter a good place for asking questions? a characterization study. In: ICWSM (2011)Google Scholar
  68. 68.
    Plotnikoff, R.C., Mayhew, A., Birkett, N., Loucaides, C.A., Fodor, G.: Age, gender, and urban-rural differences in the correlates of physical activity. Prev. Med. 39(6), 1115–1125 (2004)CrossRefGoogle Scholar
  69. 69.
    Prochaska, J.O., Velicer, W.F.: The transtheoretical model of health behavior change. Am. J. Health Promot. 12(1), 38–48 (1997)CrossRefGoogle Scholar
  70. 70.
    Raban, D., Harper, F.: Motivations for answering questions online. New Media Innov. Technol. 73 (2008)Google Scholar
  71. 71.
    Ren, Y., Harper, F.M., Drenner, S., Terveen, L.G., Kiesler, S.B., Riedl, J., Kraut, R.E.: Building member attachment in online communities: applying theories of group identity and interpersonal bonds. MIS Q. 36(3), 841–864 (2012)Google Scholar
  72. 72.
    Rogers, P.S., Lee-Wong, S.M.: Reconceptualizing politeness to accommodate dynamic tensions in subordinate-to-superior reporting. J. Bus. Tech. Commun. 17(4), 379–412 (2003)CrossRefGoogle Scholar
  73. 73.
    Rzeszotarski, J.M., Spiro, E.S., Matias, J.N., Monroy-Hernández, A., Morris, M.R.: Is anyone out there?: unpacking Q&A hashtags on Twitter. In: CHI (2014)Google Scholar
  74. 74.
    Salganik, M.J., Dodds, P.S., Watts, D.J.: Experimental study of inequality and unpredictability in an artificial cultural market. Science 311(5762), 854–856 (2006)CrossRefGoogle Scholar
  75. 75.
    Samuel, G.O.: Language and politics: indirectness in political discourse. Discourse Soc. 8(1), 49–83 (1997)CrossRefGoogle Scholar
  76. 76.
    Schoenebeck, S.Y.: The secret life of online moms: anonymity and disinhibition on In: ICWSM (2013)Google Scholar
  77. 77.
    Sherwood, N.E., Jeffery, R.W.: The behavioral determinants of exercise: implications for physical activity interventions. Annu. Rev. Nutr. 20(1), 21–44 (2000)CrossRefGoogle Scholar
  78. 78.
    Stults-Kolehmainen, M.A., Ciccolo, J.T., Bartholomew, J.B., Seifert, J., Portman, R.S.: Age and gender-related changes in exercise motivation among highly active individuals. Athl. Insight 5(1), 45 (2013)Google Scholar
  79. 79.
    Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)CrossRefGoogle Scholar
  80. 80.
    Teevan, J., Morris, M.R., Panovich, K.: Factors affecting response quantity, quality, and speed for questions asked via social network status messages. In: ICWSM (2011)Google Scholar
  81. 81.
    Teng, C.Y., Adamic, L.A.: Longevity in second life. In: ICWSM (2010)Google Scholar
  82. 82.
    Umberson, D., Crosnoe, R., Reczek, C.: Social relationships and health behavior across life course. Ann. Rev. Sociol. 36, 139 (2010)CrossRefGoogle Scholar
  83. 83.
    Vissers, S., Stolle, D.: Spill-over effects between facebook and on/offline political participation? evidence from a two-wave panel study. J. Inf. Technol. Politics 11(3), 259–275 (2014)CrossRefGoogle Scholar
  84. 84.
    Yee, N., Bailenson, J.N., Urbanek, M., Chang, F., Merget, D.: The unbearable likeness of being digital: the persistence of nonverbal social norms in online virtual environments. CyberPsychology Behav. 10(1), 115–121 (2007)CrossRefGoogle Scholar
  85. 85.
    Zhu, H., Kraut, R.E., Kittur, A.: The impact of membership overlap on the survival of online communities. In: CHI (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.McGill UniversityMontrealCanada

Personalised recommendations