Abstract
It is not surprising that social media have played an important role in shaping the political debate during the 2016 presidential election. The dynamics of social media provide a unique opportunity to detect and interpret the pivotal events and scandals of the candidates quantitatively. This paper examines several text-based analysis to determine which topics have a lasting impact on the election for the two main candidates, Clinton and Trump. About 135.5 million tweets are collected over the six weeks prior to the election. From these tweets, topic clustering, keyword extraction, and tweeter analysis are performed to better understand the impact of the events occurred during this period. Our analysis builds upon a social science foundation to provide another avenue for scholars to use in discerning how events detected from social media show the impacts of campaigns as well as campaign the election.
Keywords
- Presidential election
- Topic clustering
- Keyword extraction
- Twitter analysis
- Social media
This is a preview of subscription content, access via your institution.
Buying options








Notes
- 1.
Twitter Streaming API: https://dev.twitter.com/streaming/overview.
- 2.
New York Times API: https://developer.nytimes.com/archive_api.json.
- 3.
References
Shaw, D.R.: A study of presidential campaign event effects from 1952 to 1992. J. Polit. 61(2), 387–422 (1999)
Campbell, J.E., Norpoth, H., Abramowitz, A.I., Lewis-Beck, M.S., Tien, C., Erikson, R.S., Wlezien, C., Lockerbie, B., Holbrook, T.M., Jerôme, B., Jerôme-Speziari, V., Graefe, A., Armstrong, J.S., Jones, R.J., Cuzán, A.G.: Recap of the 2016 election forecasts. PS: Polit. Sci. Polit. 50(2), 331–338 (2017)
Lewis-Beck, M.S., Stegmaier, M.: US presidential election forecasting. PS: Polit. Sci. Polit. 47(2), 284–288 (2014)
Clark, T.S., Staton, J.K., Wang, Y., Agichtein, E.: Using Twitter to study public discourse in the wake of judicial decisions: public reactions to the supreme court’s same-sex marriage cases (2014)
Leigh, A., Wolfers, J.: Competing approaches to forecasting elections: economic models, opinion polling and prediction markets. Econ. Rec. 82(258), 325–340 (2006)
Abramowitz, A.I.: An improved model for predicting presidential election outcomes. PS: Polit. Sci. Polit. 21(4), 843–847 (1988)
Campbell, J.E., Wink, K.A.: Trial-heat forecasts of the presidential vote. Am. Polit. Q. 18(3), 251–269 (1990)
Campbell, J.E., Cherry, L.L., Wink, K.A.: The convention bump. Am. Polit. Q. 20(3), 287–307 (1992)
Norpoth, H., Bednarczuk, M.: History and primary: the Obama re-election. In: APSA 2012 Annual Meeting Paper, September 2012
Abramowitz, A.: Forecasting in a polarized era: the time for change model and the 2012 presidential election. PS: Polit. Sci. Polit. 45(4), 618–619 (2012)
Hillygus, D.S.: The evolution of election polling in the united states. Public Opin. Q. 75(5), 962–981 (2011)
Silver, N.: Who will win the presidency? (2016)
Gollin, A.E.: Polling and the news media. Public Opin. Q. 51(part 2: Supplement: 50th Anniversary Issue), S86 (1987)
Tenpas, K.D., McCann, J.A.: Testing the permanence of the permanent campaign: an analysis of presidential polling expenditures, 1977–2002. Public Opin. Q. 71(3), 349–366 (2007)
Iyengar, S., Norpoth, H., Hahn, K.S.: Consumer demand for election news: the horserace sells. J. Polit. 66(1), 157–175 (2004)
Rosenstiel, T.: Political polling and the new media culture: a case of more being less. Public Opin. Q. 69(5), 698–715 (2005)
Miller, P.R., Conover, P.J.: Red and blue states of mind. Polit. Res. Q. 68(2), 225–239 (2015)
Harris, L.: Election polling and research. Public Opin. Q. 21(1, Anniversary Issue Devoted to Twenty Years of Public Opinion Research), 108 (1957)
Jacobs, L.R., Shapiro, R.Y.: Issues, candidate image, and priming: the use of private polls in Kennedy’s 1960 presidential campaign. Am. Polit. Sci. Rev. 88(3), 527–540 (1994)
King, R., Schnitzer, M.: Contemporary use of private political polling. Public Opin. Q. 32(3), 431 (1968)
Jacobs, L.R.: Polling politics, media, and election campaigns. Public Opin. Q. 69(5), 635–641 (2005)
Jacobs, L.R., Shapiro, R.Y.: The rise of presidential polling: the nixon white house in historical perspective. Public Opin. Q. 59(2), 163 (1995)
Gelman, A., King, G.: Why are American presidential election campaign polls so variable when votes are so predictable? Br. J. Polit. Sci. 23(4), 409 (1993)
Arceneaux, K.: Do campaigns help voters learn? A cross-national analysis. Br. J. Polit. Sci. 36(1), 159 (2005)
Wlezien, C., Erikson, R.S.: The timeline of presidential election campaigns. J. Polit. 64(4), 969–993 (2002)
Atefeh, F., Khreich, W.: A survey of techniques for event detection in Twitter. Comput. Intell. 31(1), 132–164 (2013)
Ivan, C., Moldovan, A.: Twitrends: a real time trending topics detection system for Twitter social network. Int. J. Comput. Appl. 152(4), 16–25 (2016)
Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event identification on Twitter. In: ICWSM, vol. 11, pp. 438–441 (2011)
Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-line event detection. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 1998. ACM Press (1998)
Conroy, J.M., O’leary, D.P.: Text summarization via hidden Markov models. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2001. ACM Press (2001)
Becker, H., Naaman, M., Gravano, L.: Selecting quality Twitter content for events. In: ICWSM 2011 (2011)
Yajuan, D., Zhimin, C., Furu, W., Ming, Z., Shum, H.Y.: Twitter topic summarization by ranking tweets using social influence and content quality. In: Proceedings of the 24th International Conference on Computational Linguistics, pp. 763–780 (2012)
Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 43–76. Springer, Boston (2012). doi:10.1007/978-1-4614-3223-4_3
Xu, W., Grishman, R., Meyers, A., Ritter, A.: A preliminary study of tweet summarization using information extraction. In: NAACL 2013, p. 20 (2013)
Matsuo, Y., Ishizuka, M.: Keyword extraction from a single document using word co-occurrence statistical information. Int. J. Artif. Intell. Tools 13(1), 157–169 (2004)
Mishra, A., Vishwakarma, S.: Analysis of TF-IDF model and its variant for document retrieval. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, December 2015
Ramos, J.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning (2003)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)
Campr, M., Ježek, K.: Comparing semantic models for evaluating automatic document summarization. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS, vol. 9302, pp. 252–260. Springer, Cham (2015). doi:10.1007/978-3-319-24033-6_29
Polettini, N.: The vector space model in information retrieval-term weighting problem. Entropy 1–9 (2004)
Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)
Allcott, H.: Social Media and Fake News in the 2016 Election (2017)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. In: Soviet Physics Doklady, vol. 10 (1966)
Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)
Bermingham, A., Smeaton, A.F.: On using Twitter to Monitor Political Sentiment and Predict Election Results (2011)
O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: ICWSM 2011, pp. 122–129 (2010)
Marchetti-Bowick, M., Chambers, N.: Learning for microblogs with distant supervision: political forecasting with Twitter. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 603–612. Association for Computational Linguistics (2012)
Viz 2016 (2015)
Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: what 140 characters reveal about political sentiment. ICWSM 10(1), 178–185 (2010)
Shin, B., Lee, T., Choi, J.D.: Lexicon integrated CNN models with attention for sentiment analysis. In: Proceedings of the EMNLP Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA 2017 (2017)
Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLoS ONE 10(12), e0144296 (2015)
Kilgarriff, A., Fellbaum, C.: WordNet: An Electronic Lexical Database, vol. 76. JSTOR, September 2000
Xiang, Y., Sarvary, M.: News consumption and media bias. Mark. Sci. 26(5), 611–628 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Shaban, T.A., Hexter, L., Choi, J.D. (2017). Event Analysis on the 2016 U.S. Presidential Election Using Social Media. In: Ciampaglia, G., Mashhadi, A., Yasseri, T. (eds) Social Informatics. SocInfo 2017. Lecture Notes in Computer Science(), vol 10539. Springer, Cham. https://doi.org/10.1007/978-3-319-67217-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-67217-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67216-8
Online ISBN: 978-3-319-67217-5
eBook Packages: Computer ScienceComputer Science (R0)