Skip to main content

Towards Simulation-Based Role Optimization in Organizations

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10505)


The modern workplace is driven by a high amount of available information which can be observed in various domains, e.g., in Industry 4.0. Hence, the question arises: Which competences do actors need to build and efficient work environment? This paper proposes an simulation-based optimization approach to adapt role configurations for team work scenarios. The approach was tested using a multiagent-based job-shop-scheduling model to simulate the effects of various role configurations.


  • Optimization
  • Multiagent-based simulation
  • Agent-based modeling
  • Team cognitions

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA J. Comput. 3(2), 149–156 (1991)

    CrossRef  MATH  Google Scholar 

  2. Berndt, J.O., Herzog, O.: Efficient multiagent coordination in dynamic environments. In: Boissier, O., Bradshaw, J., Cao, L., Fischer, K., Hacid, M.S. (eds.) IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 188–195. IEEE Computer Society, Lyon (2011)

    Google Scholar 

  3. Blażewicz, J., Pesch, E., Sterna, M.: The disjunctive graph machine representation of the job shop scheduling problem. Eur. J. Oper. Res. 127(2), 317–331 (2000)

    CrossRef  MATH  Google Scholar 

  4. Ellwart, T., Antoni, C.H.: Shared and distributed team cognition and information overload. Evidence and approaches for team adaptation. In: Marques, R.P.F., Batista, J.C.L. (eds.) Information and Communication Overload in the Digital Age, pp. 223–245. IGI Global, Hershey (2017). doi:10.4018/978-1-5225-2061-0.ch010

  5. Eppler, M.J., Mengis, J.: The concept of information overload: a review of literature from organization science, accounting, marketing, MIS, and related disciplines. Inf. Soc. 20, 325–344 (2004)

    CrossRef  Google Scholar 

  6. Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26(2), 62–72 (2005)

    Google Scholar 

  7. Hinsz, V.B., Tindale, R.S., Vollrath, D.A.: The emerging conceptualization of groups as information processors. Psychol. Bull. 121(1), 43–64 (1997)

    CrossRef  Google Scholar 

  8. Kagermann, H., Wahlster, W., Helbig, J. (eds.): Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. Industry-Sciemce Research Alliance; acatech - National Academy of Science and Engineering, Frankfurt (2013)

    Google Scholar 

  9. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  10. Salas, E., Fiore, S.M., Letsky, M.P. (eds.): Theories of Team Cognition - Cross-Disciplinary Perspectives. Taylor & Francis Group, New York (2012)

    Google Scholar 

  11. Schuldt, A.: Multiagent Coordination Enabling Autonomous Logistics. Springer, Berlin (2011)

    CrossRef  MATH  Google Scholar 

  12. Thielscher, M.: A general game description language for incomplete information games. In: Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence, vol. 10, pp. 994–999 (2010)

    Google Scholar 

  13. Thielscher, M.: The general game playing description language is universal. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22 (2011)

    Google Scholar 

  14. Timm, I.J., Berndt, J.O., Reuter, L., Ellwart, T., Antoni, C., Ulfert, A.S.: Towards multiagent-based simulation of knowledge management in teams. In: Leyer, M., Richter, A., Vodanovich, S. (eds.) Flexible Knowledge Practices and the Digital Workplace (FKPDW), Workshop Within the 9th Conference on Professional Knowledge Management, pp. 25–40. KIT, Karlsruhe (2017)

    Google Scholar 

  15. Van Laarhoven, P.J., Aarts, E.H., Lenstra, J.K.: Job shop scheduling by simulated annealing. Oper. Res. 40(1), 113–125 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Weiss, G.: Multiagent Systems, 2nd edn. The MIT Press, Cambridge (2013)

    Google Scholar 

  17. Wooldridge, M.J., Jennings, N.R.: Towards a theory of cooperative problem solving. In: Perram, J.W., Müller, J.-P. (eds.) MAAMAW 1994. LNCS, vol. 1069, pp. 40–53. Springer, Heidelberg (1996). doi:10.1007/3-540-61157-6_20

    CrossRef  Google Scholar 

Download references


The project AdaptPRO: Adaptive Process and Role design in Organizations (TI 548/-1) is funded by the German Research Foundation (DFG) within the Priority Program “Intentional Forgetting in Organizations” (SPP 1921).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lukas Reuter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Reuter, L., Berndt, J.O., Timm, I.J. (2017). Towards Simulation-Based Role Optimization in Organizations. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds) KI 2017: Advances in Artificial Intelligence. KI 2017. Lecture Notes in Computer Science(), vol 10505. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67189-5

  • Online ISBN: 978-3-319-67190-1

  • eBook Packages: Computer ScienceComputer Science (R0)