Advertisement

Towards Simulation-Based Role Optimization in Organizations

  • Lukas Reuter
  • Jan Ole Berndt
  • Ingo J. Timm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10505)

Abstract

The modern workplace is driven by a high amount of available information which can be observed in various domains, e.g., in Industry 4.0. Hence, the question arises: Which competences do actors need to build and efficient work environment? This paper proposes an simulation-based optimization approach to adapt role configurations for team work scenarios. The approach was tested using a multiagent-based job-shop-scheduling model to simulate the effects of various role configurations.

Keywords

Optimization Multiagent-based simulation Agent-based modeling Team cognitions 

Notes

Acknowledgments

The project AdaptPRO: Adaptive Process and Role design in Organizations (TI 548/-1) is funded by the German Research Foundation (DFG) within the Priority Program “Intentional Forgetting in Organizations” (SPP 1921).

References

  1. 1.
    Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA J. Comput. 3(2), 149–156 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Berndt, J.O., Herzog, O.: Efficient multiagent coordination in dynamic environments. In: Boissier, O., Bradshaw, J., Cao, L., Fischer, K., Hacid, M.S. (eds.) IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 188–195. IEEE Computer Society, Lyon (2011)Google Scholar
  3. 3.
    Blażewicz, J., Pesch, E., Sterna, M.: The disjunctive graph machine representation of the job shop scheduling problem. Eur. J. Oper. Res. 127(2), 317–331 (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ellwart, T., Antoni, C.H.: Shared and distributed team cognition and information overload. Evidence and approaches for team adaptation. In: Marques, R.P.F., Batista, J.C.L. (eds.) Information and Communication Overload in the Digital Age, pp. 223–245. IGI Global, Hershey (2017). doi: 10.4018/978-1-5225-2061-0.ch010
  5. 5.
    Eppler, M.J., Mengis, J.: The concept of information overload: a review of literature from organization science, accounting, marketing, MIS, and related disciplines. Inf. Soc. 20, 325–344 (2004)CrossRefGoogle Scholar
  6. 6.
    Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26(2), 62–72 (2005)Google Scholar
  7. 7.
    Hinsz, V.B., Tindale, R.S., Vollrath, D.A.: The emerging conceptualization of groups as information processors. Psychol. Bull. 121(1), 43–64 (1997)CrossRefGoogle Scholar
  8. 8.
    Kagermann, H., Wahlster, W., Helbig, J. (eds.): Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. Industry-Sciemce Research Alliance; acatech - National Academy of Science and Engineering, Frankfurt (2013)Google Scholar
  9. 9.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  10. 10.
    Salas, E., Fiore, S.M., Letsky, M.P. (eds.): Theories of Team Cognition - Cross-Disciplinary Perspectives. Taylor & Francis Group, New York (2012)Google Scholar
  11. 11.
    Schuldt, A.: Multiagent Coordination Enabling Autonomous Logistics. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Thielscher, M.: A general game description language for incomplete information games. In: Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence, vol. 10, pp. 994–999 (2010)Google Scholar
  13. 13.
    Thielscher, M.: The general game playing description language is universal. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22 (2011)Google Scholar
  14. 14.
    Timm, I.J., Berndt, J.O., Reuter, L., Ellwart, T., Antoni, C., Ulfert, A.S.: Towards multiagent-based simulation of knowledge management in teams. In: Leyer, M., Richter, A., Vodanovich, S. (eds.) Flexible Knowledge Practices and the Digital Workplace (FKPDW), Workshop Within the 9th Conference on Professional Knowledge Management, pp. 25–40. KIT, Karlsruhe (2017)Google Scholar
  15. 15.
    Van Laarhoven, P.J., Aarts, E.H., Lenstra, J.K.: Job shop scheduling by simulated annealing. Oper. Res. 40(1), 113–125 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Weiss, G.: Multiagent Systems, 2nd edn. The MIT Press, Cambridge (2013)Google Scholar
  17. 17.
    Wooldridge, M.J., Jennings, N.R.: Towards a theory of cooperative problem solving. In: Perram, J.W., Müller, J.-P. (eds.) MAAMAW 1994. LNCS, vol. 1069, pp. 40–53. Springer, Heidelberg (1996). doi: 10.1007/3-540-61157-6_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Business Informatics ITrier UniversityTrierGermany

Personalised recommendations