Skip to main content

Dynamic Map Update of Non-static Facility Logistics Environment with a Multi-robot System

  • Conference paper
  • First Online:
KI 2017: Advances in Artificial Intelligence (KI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10505))

Abstract

Autonomous robots need to perceive and represent their environments and act accordingly. Using simultaneous localization and mapping (SLAM) methods, robots can build maps of the environment which are efficient for localization and path planning as long as the environment remains unchanged. However, facility logistics environments are not static because pallets and other obstacles are stored temporarily.

This paper proposes a novel solution for updating maps of changing environments (i.e. environments with low-dynamic or semi-static objects) in real-time with multiple robots. Each robot is equipped with a laser range sensor and runs localization to estimate its position. Each robot senses the change in the environment with respect to a current map, initially built with a SLAM method, and constructs a temporary map which will be merged into the current map using localization information and line features of the map. This procedure enables the creation of long-term mapping robot systems for facility logistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grenzebach maschinenbau GmbH, Hamlar, Germany. http://www.grenzebach.com/index.php/eng/technology/logistic_solutions/agv_solutions/g_pro. Accessed 03 May 2015

  2. Hector SLAM. http://wiki.ros.org/hector_slam. Accessed 07 Apr 2015

  3. Kivasystems. http://www.kivasystems.com/solutions/system-overview/. Accessed 03 May 2015

  4. Lifenav - reliable lifelong navigation for mobile robots. http://lifenav.informatik.uni-freiburg.de/index.html. Accessed 03 May 2015

  5. Livinglab zellulare transportsysteme. http://www.iml.fraunhofer.de/en/researchhallslaboratories/zft-halle.html. Accessed 10 Apr 2015

  6. OpenCV HoughLinesP. http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghlinesp#houghlinesp. Accessed 12 Apr 2015

  7. Robot operating system. http://www.ros.org/about-ros/. Accessed 07 Apr 2015

  8. ZeroMQ. http://www.zeromq.org. Accessed 07 Apr 2015

  9. Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Map updating in dynamic environments. In: ISR/ROBOTIK 2010, pp. 1–8 (2010)

    Google Scholar 

  10. Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Multi-robot map updating in dynamic environments. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.) Distributed Autonomous Robotic Systems, vol. 83, pp. 147–160. Springer, Heidelberg (2010). doi:10.1007/978-3-642-32723-0

    Chapter  Google Scholar 

  11. Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robots 25(3), 305–316 (2008)

    Article  Google Scholar 

  12. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  13. Fenwick, J.W., Newman, P.M., Leonard, J.J.: Cooperative concurrent mapping and localization, pp. 1810–1817 (2002)

    Google Scholar 

  14. Howard, A.: Multi-robot simultaneous localization and mapping using particle filters. Int. J. Robot. Res. 25(12), 1243–1256 (2006)

    Article  Google Scholar 

  15. Jensen, B., Ramel, G., Siegwart, R.: Detecting semi-static objects with a laser scanner. In: Dillmann, R., Wörn, H., Gockel, T. (eds.) Autonome Mobile Systeme 2003. Informatik aktuell, pp. 21–31. Springer, Heidelberg (2003). doi:10.1007/978-3-642-18986-9_3

    Chapter  Google Scholar 

  16. Kamagaew, A., Stenzel, J., Nettstrater, A., ten Hompel, M.: Concept of cellular transport systems in facility logistics. In: 2011 5th International Conference on Automation, Robotics and Applications (ICARA), pp. 40–45, December 2011

    Google Scholar 

  17. Kleiner, A., Sun, D., Meyer-Delius, D.: ARMO: adaptive road map optimization for large robot teams. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3276–3282, September 2011

    Google Scholar 

  18. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: Proceedings of the IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE, November 2011

    Google Scholar 

  19. Lakaemper, R., Latecki, L., Wolter, D.: Incremental multi-robot mapping. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 3846–3851, August 2005

    Google Scholar 

  20. Lee, H.C., Lee, S.H., Lee, T.S., Kim, D.J., Lee, B.H.: A survey of map merging techniques for cooperative-SLAM. In: 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 285–287, November 2012

    Google Scholar 

  21. Liebig, T., Kemloh Wagoum, A.U.: Modelling microscopic pedestrian mobility using bluetooth. In: ICAART, pp. 270–275. SciTePress (2012)

    Google Scholar 

  22. Liebig, T., Piatkowski, N., Bockermann, C., Morik, K.: Dynamic route planning with real-time traffic predictions. Inf. Syst. 64, 258–265 (2017). http://www.sciencedirect.com/science/article/pii/S0306437916000181

    Article  Google Scholar 

  23. Liebig, T., Sotzny, M.: On avoiding traffic jams with dynamic self-organizing trip planning. In: Clementini, E., Donnelly, M., Yuan, M., Kray, C., Fogliaroni, P., Ballatore, A. (eds.) Proceedings of the 13th International Conference on Spatial Information Theory, COSIT 2017, L’Aquila, Italy, 4–8 September 2017 (2017, accepted)

    Google Scholar 

  24. Liebig, T., Xu, Z., May, M.: Incorporating mobility patterns in pedestrian quantity estimation and sensor placement. In: Nin, J., Villatoro, D. (eds.) CitiSens 2012. LNCS, vol. 7685, pp. 67–80. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36074-9_7

    Chapter  Google Scholar 

  25. Meyer-Delius, D., Hess, J.M., Grisetti, G., Burgard, W.: Temporary maps for robust localization in semi-static environments. In: IROS, pp. 5750–5755. IEEE (2010)

    Google Scholar 

  26. Mitsou, N., Tzafestas, C.: Temporal occupancy grid for mobile robot dynamic environment mapping. In: Mediterranean Conference on Control Automation, MED 2007, pp. 1–8, June 2007

    Google Scholar 

  27. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593–598. AAAI (2002)

    Google Scholar 

  28. Nguyen, V., Harati, A., Tomatis, N., Martinelli, A., Siegwart, R.: Orthogonal SLAM: a step toward lightweight indoor autonomous navigation. In: None (2006)

    Google Scholar 

  29. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  30. Trenkle, A., Seibold, Z., Stoll, T.: Safety requirements and safety functions for decentralized controlled autonomous systems. In: 2013 XXIV International Symposium on Information, Communication and Automation Technologies (ICAT), pp. 1–6, October 2013

    Google Scholar 

  31. Walcott, A.N.: Long-term robot mapping in dynamic environments. Ph.D. thesis, Cambridge, MA, USA, aAI0823852 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors were partially funded by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876, project B2 (the study was also performed in collaboration with project B4) and the European Union Horizon 2020 Programme (Horizon2020/2014–2020), under grant agreement number 688380 “VaVeL: Variety, Veracity, VaLue: Handling the Multiplicity of Urban Sensors”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayabrasul Shaik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shaik, N., Liebig, T., Kirsch, C., Müller, H. (2017). Dynamic Map Update of Non-static Facility Logistics Environment with a Multi-robot System. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds) KI 2017: Advances in Artificial Intelligence. KI 2017. Lecture Notes in Computer Science(), vol 10505. Springer, Cham. https://doi.org/10.1007/978-3-319-67190-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67190-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67189-5

  • Online ISBN: 978-3-319-67190-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics