Advertisement

Dynamic Map Update of Non-static Facility Logistics Environment with a Multi-robot System

  • Nayabrasul Shaik
  • Thomas Liebig
  • Christopher Kirsch
  • Heinrich Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10505)

Abstract

Autonomous robots need to perceive and represent their environments and act accordingly. Using simultaneous localization and mapping (SLAM) methods, robots can build maps of the environment which are efficient for localization and path planning as long as the environment remains unchanged. However, facility logistics environments are not static because pallets and other obstacles are stored temporarily.

This paper proposes a novel solution for updating maps of changing environments (i.e. environments with low-dynamic or semi-static objects) in real-time with multiple robots. Each robot is equipped with a laser range sensor and runs localization to estimate its position. Each robot senses the change in the environment with respect to a current map, initially built with a SLAM method, and constructs a temporary map which will be merged into the current map using localization information and line features of the map. This procedure enables the creation of long-term mapping robot systems for facility logistics.

Notes

Acknowledgements

The authors were partially funded by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876, project B2 (the study was also performed in collaboration with project B4) and the European Union Horizon 2020 Programme (Horizon2020/2014–2020), under grant agreement number 688380 “VaVeL: Variety, Veracity, VaLue: Handling the Multiplicity of Urban Sensors”.

References

  1. 1.
    Grenzebach maschinenbau GmbH, Hamlar, Germany. http://www.grenzebach.com/index.php/eng/technology/logistic_solutions/agv_solutions/g_pro. Accessed 03 May 2015
  2. 2.
    Hector SLAM. http://wiki.ros.org/hector_slam. Accessed 07 Apr 2015
  3. 3.
  4. 4.
    Lifenav - reliable lifelong navigation for mobile robots. http://lifenav.informatik.uni-freiburg.de/index.html. Accessed 03 May 2015
  5. 5.
    Livinglab zellulare transportsysteme. http://www.iml.fraunhofer.de/en/researchhallslaboratories/zft-halle.html. Accessed 10 Apr 2015
  6. 6.
  7. 7.
    Robot operating system. http://www.ros.org/about-ros/. Accessed 07 Apr 2015
  8. 8.
    ZeroMQ. http://www.zeromq.org. Accessed 07 Apr 2015
  9. 9.
    Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Map updating in dynamic environments. In: ISR/ROBOTIK 2010, pp. 1–8 (2010)Google Scholar
  10. 10.
    Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Multi-robot map updating in dynamic environments. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.) Distributed Autonomous Robotic Systems, vol. 83, pp. 147–160. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-32723-0 CrossRefGoogle Scholar
  11. 11.
    Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robots 25(3), 305–316 (2008)CrossRefGoogle Scholar
  12. 12.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)CrossRefGoogle Scholar
  13. 13.
    Fenwick, J.W., Newman, P.M., Leonard, J.J.: Cooperative concurrent mapping and localization, pp. 1810–1817 (2002)Google Scholar
  14. 14.
    Howard, A.: Multi-robot simultaneous localization and mapping using particle filters. Int. J. Robot. Res. 25(12), 1243–1256 (2006)CrossRefGoogle Scholar
  15. 15.
    Jensen, B., Ramel, G., Siegwart, R.: Detecting semi-static objects with a laser scanner. In: Dillmann, R., Wörn, H., Gockel, T. (eds.) Autonome Mobile Systeme 2003. Informatik aktuell, pp. 21–31. Springer, Heidelberg (2003). doi: 10.1007/978-3-642-18986-9_3 CrossRefGoogle Scholar
  16. 16.
    Kamagaew, A., Stenzel, J., Nettstrater, A., ten Hompel, M.: Concept of cellular transport systems in facility logistics. In: 2011 5th International Conference on Automation, Robotics and Applications (ICARA), pp. 40–45, December 2011Google Scholar
  17. 17.
    Kleiner, A., Sun, D., Meyer-Delius, D.: ARMO: adaptive road map optimization for large robot teams. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3276–3282, September 2011Google Scholar
  18. 18.
    Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: Proceedings of the IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE, November 2011Google Scholar
  19. 19.
    Lakaemper, R., Latecki, L., Wolter, D.: Incremental multi-robot mapping. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 3846–3851, August 2005Google Scholar
  20. 20.
    Lee, H.C., Lee, S.H., Lee, T.S., Kim, D.J., Lee, B.H.: A survey of map merging techniques for cooperative-SLAM. In: 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 285–287, November 2012Google Scholar
  21. 21.
    Liebig, T., Kemloh Wagoum, A.U.: Modelling microscopic pedestrian mobility using bluetooth. In: ICAART, pp. 270–275. SciTePress (2012)Google Scholar
  22. 22.
    Liebig, T., Piatkowski, N., Bockermann, C., Morik, K.: Dynamic route planning with real-time traffic predictions. Inf. Syst. 64, 258–265 (2017). http://www.sciencedirect.com/science/article/pii/S0306437916000181 CrossRefGoogle Scholar
  23. 23.
    Liebig, T., Sotzny, M.: On avoiding traffic jams with dynamic self-organizing trip planning. In: Clementini, E., Donnelly, M., Yuan, M., Kray, C., Fogliaroni, P., Ballatore, A. (eds.) Proceedings of the 13th International Conference on Spatial Information Theory, COSIT 2017, L’Aquila, Italy, 4–8 September 2017 (2017, accepted)Google Scholar
  24. 24.
    Liebig, T., Xu, Z., May, M.: Incorporating mobility patterns in pedestrian quantity estimation and sensor placement. In: Nin, J., Villatoro, D. (eds.) CitiSens 2012. LNCS, vol. 7685, pp. 67–80. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36074-9_7 CrossRefGoogle Scholar
  25. 25.
    Meyer-Delius, D., Hess, J.M., Grisetti, G., Burgard, W.: Temporary maps for robust localization in semi-static environments. In: IROS, pp. 5750–5755. IEEE (2010)Google Scholar
  26. 26.
    Mitsou, N., Tzafestas, C.: Temporal occupancy grid for mobile robot dynamic environment mapping. In: Mediterranean Conference on Control Automation, MED 2007, pp. 1–8, June 2007Google Scholar
  27. 27.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593–598. AAAI (2002)Google Scholar
  28. 28.
    Nguyen, V., Harati, A., Tomatis, N., Martinelli, A., Siegwart, R.: Orthogonal SLAM: a step toward lightweight indoor autonomous navigation. In: None (2006)Google Scholar
  29. 29.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  30. 30.
    Trenkle, A., Seibold, Z., Stoll, T.: Safety requirements and safety functions for decentralized controlled autonomous systems. In: 2013 XXIV International Symposium on Information, Communication and Automation Technologies (ICAT), pp. 1–6, October 2013Google Scholar
  31. 31.
    Walcott, A.N.: Long-term robot mapping in dynamic environments. Ph.D. thesis, Cambridge, MA, USA, aAI0823852 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nayabrasul Shaik
    • 1
  • Thomas Liebig
    • 1
  • Christopher Kirsch
    • 2
  • Heinrich Müller
    • 1
  1. 1.TU Dortmund UniversityDortmundGermany
  2. 2.Fraunhofer Institute for Material Flow and LogisticsDortmundGermany

Personalised recommendations