Skip to main content

LiMa: Sequential Lifted Marginal Filtering on Multiset State Descriptions

  • Conference paper
  • First Online:
KI 2017: Advances in Artificial Intelligence (KI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10505))

Abstract

Maintaining the a-posteriori distribution of categorical states given a sequence of noisy and ambiguous observations, e.g. sensor data, can lead to situations where one observation can correspond to a large number of different states. We call these states symmetrical as they cannot be distinguished given the observation. Considering each of them during the inference is computationally infeasible, even for small scenarios. However, the number of situations (called hypotheses) can be reduced by abstracting from particular ones and representing all symmetrical in a single abstract state. We propose a novel Bayesian Filtering algorithm that performs this abstraction. The algorithm that we call Lifted Marginal Filtering (LiMa) is inspired by Lifted Inference and combines techniques known from Computational State Space Models and Multiset Rewriting Systems to perform efficient sequential inference on a parametric multiset state description. We demonstrate that our approach is working by comparing LiMa with conventional filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the term density to refer to densities over continuous domains as well as probability distributions over finite domains.

  2. 2.

    A multiset over some set S is defined as a partial map from S to \(\mathbb {N}\). We use \([\![\, n_1s_1,n_2s_s,n_3s_3 \,]\!]\) to denote the multiset containing \(s_1,s_2\) and \(s_3\) with the corresponding cardinalities. We use \(\mathcal {M}(S)\) to refer to the set of all multisets over S.

References

  1. Ahmadi, B., Kersting, K., Sanner, S.: Multi-evidence lifted message passing, with application to pagerank and the kalman filter. In: Proceedings-International Joint Conference on Artificial Intelligence, p. 1152 (2011)

    Google Scholar 

  2. Baker, C.L., Saxe, R., Tenenbaum, J.B.: Action understanding as inverse planning. Cognition 113(3), 329–349 (2009)

    Article  Google Scholar 

  3. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Maximally parallel probabilistic semantics for multiset rewriting. Fundam. Inform. 112(1), 1–17 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Berry, G., Boudol, G.: The chemical abstract machine. In: POPL, pp. 81–94. ACM, San Francisco(1990)

    Google Scholar 

  5. Bistarelli, S., Cervesato, I., Lenzini, G., Marangoni, R., Martinelli, F.: On representing biological systems through multiset rewriting. In: Moreno-Díaz, R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 415–426. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45210-2_38

    Chapter  Google Scholar 

  6. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order MDPs. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, vol. 1, pp. 690–700 (2001)

    Google Scholar 

  7. Choi, J., Amir, E., Xu, T., Valocchi, A.J.: Learning relational kalman filtering. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2539–2546 (2015)

    Google Scholar 

  8. Choi, J., Hill, D.J., Amir, E.: Lifted inference for relational continuous models. In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2010, pp. 126–134. AUAI Press (2010)

    Google Scholar 

  9. Fox, V., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filtering for location estimation. IEEE Pervasive Comput. 2(3), 24–33 (2003)

    Article  Google Scholar 

  10. Geier, T., Biundo, S.: Approximate online inference for dynamic Markov logic networks. In: 23rd IEEE International Conference on Tools with Artificial Intelligence, pp. 764–768. IEEE (2011)

    Google Scholar 

  11. Huang, J., Guestrin, C., Jiang, X., Guibas, L.: Exploiting probabilistic independence for permutations. In: AISTATS, Clearwater, USA, pp. 248–255 (2009)

    Google Scholar 

  12. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: UAI, Montreal, Canada, pp. 277–284 (2009)

    Google Scholar 

  13. Kersting, K.: Lifted probabilistic inference. In: 20th European Conference on Artificial Intelligence, ECAI 2012. Frontiers in Artificial Intelligence and Applications, vol. 242. IOS Press (2012)

    Google Scholar 

  14. Khardon, R., Sanner, S.: Stochastic planning and lifted inference. arXiv preprint arXiv:1701.01048 (2017)

  15. Kimmig, A., Mihalkova, L., Getoor, L.: Lifted graphical models: a survey. Mach. Learn. 99, 1–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kondor, R., Howard, A., Jebara, T.: Multi-object tracking with representations of the symmetric group. In: AISTATS, vol. 2, pp. 211–218 (2007)

    Google Scholar 

  17. Krüger, F., Nyolt, M., Yordanova, K., Hein, A., Kirste, T.: Computational state space models for activity and intention recognition. A feasibility study. PLOS ONE 9(11), e109381 (2014)

    Article  Google Scholar 

  18. Poole, D.: First-order probabilistic inference. In: IJCAI, pp. 985–991 (2003)

    Google Scholar 

  19. Ramírez, M., Geffner, H.: Goal recognition over POMDPs: inferring the intention of a POMDP agent. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 2009–2014, July 2011

    Google Scholar 

  20. Sanner, S., Boutilier, C.: Practical solution techniques for first-order MDPs. Artif. Intell. 173, 748–788 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: An office scenario dataset for benchmarking observation-equivalent entities (2016). http://dx.doi.org/10.18453/rosdok_id00000138

  22. Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: Abstracting from observation-equivalent entities in human behavior modeling. In: AAAI Workshop: Plan, Activity, and Intent Recognition, February 2017

    Google Scholar 

  23. Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted probabilistic inference by first-order knowledge compilation. In: IJCAI, pp. 2178–2185 (2011)

    Google Scholar 

  24. Venugopal, D., Gogate, V.: Evidence-based clustering for scalable inference in Markov logic. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8726, pp. 258–273. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44845-8_17

    Google Scholar 

  25. Wilson, D.H., Atkeson, C.: Simultaneous tracking and activity recognition (STAR) using many anonymous, binary sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005). doi:10.1007/11428572_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T. (2017). LiMa: Sequential Lifted Marginal Filtering on Multiset State Descriptions. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds) KI 2017: Advances in Artificial Intelligence. KI 2017. Lecture Notes in Computer Science(), vol 10505. Springer, Cham. https://doi.org/10.1007/978-3-319-67190-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67190-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67189-5

  • Online ISBN: 978-3-319-67190-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics