Advertisement

LiMa: Sequential Lifted Marginal Filtering on Multiset State Descriptions

  • Max Schröder
  • Stefan Lüdtke
  • Sebastian Bader
  • Frank Krüger
  • Thomas Kirste
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10505)

Abstract

Maintaining the a-posteriori distribution of categorical states given a sequence of noisy and ambiguous observations, e.g. sensor data, can lead to situations where one observation can correspond to a large number of different states. We call these states symmetrical as they cannot be distinguished given the observation. Considering each of them during the inference is computationally infeasible, even for small scenarios. However, the number of situations (called hypotheses) can be reduced by abstracting from particular ones and representing all symmetrical in a single abstract state. We propose a novel Bayesian Filtering algorithm that performs this abstraction. The algorithm that we call Lifted Marginal Filtering (LiMa) is inspired by Lifted Inference and combines techniques known from Computational State Space Models and Multiset Rewriting Systems to perform efficient sequential inference on a parametric multiset state description. We demonstrate that our approach is working by comparing LiMa with conventional filtering.

References

  1. 1.
    Ahmadi, B., Kersting, K., Sanner, S.: Multi-evidence lifted message passing, with application to pagerank and the kalman filter. In: Proceedings-International Joint Conference on Artificial Intelligence, p. 1152 (2011)Google Scholar
  2. 2.
    Baker, C.L., Saxe, R., Tenenbaum, J.B.: Action understanding as inverse planning. Cognition 113(3), 329–349 (2009)CrossRefGoogle Scholar
  3. 3.
    Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Maximally parallel probabilistic semantics for multiset rewriting. Fundam. Inform. 112(1), 1–17 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berry, G., Boudol, G.: The chemical abstract machine. In: POPL, pp. 81–94. ACM, San Francisco(1990)Google Scholar
  5. 5.
    Bistarelli, S., Cervesato, I., Lenzini, G., Marangoni, R., Martinelli, F.: On representing biological systems through multiset rewriting. In: Moreno-Díaz, R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 415–426. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45210-2_38 CrossRefGoogle Scholar
  6. 6.
    Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order MDPs. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, vol. 1, pp. 690–700 (2001)Google Scholar
  7. 7.
    Choi, J., Amir, E., Xu, T., Valocchi, A.J.: Learning relational kalman filtering. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2539–2546 (2015)Google Scholar
  8. 8.
    Choi, J., Hill, D.J., Amir, E.: Lifted inference for relational continuous models. In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2010, pp. 126–134. AUAI Press (2010)Google Scholar
  9. 9.
    Fox, V., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filtering for location estimation. IEEE Pervasive Comput. 2(3), 24–33 (2003)CrossRefGoogle Scholar
  10. 10.
    Geier, T., Biundo, S.: Approximate online inference for dynamic Markov logic networks. In: 23rd IEEE International Conference on Tools with Artificial Intelligence, pp. 764–768. IEEE (2011)Google Scholar
  11. 11.
    Huang, J., Guestrin, C., Jiang, X., Guibas, L.: Exploiting probabilistic independence for permutations. In: AISTATS, Clearwater, USA, pp. 248–255 (2009)Google Scholar
  12. 12.
    Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: UAI, Montreal, Canada, pp. 277–284 (2009)Google Scholar
  13. 13.
    Kersting, K.: Lifted probabilistic inference. In: 20th European Conference on Artificial Intelligence, ECAI 2012. Frontiers in Artificial Intelligence and Applications, vol. 242. IOS Press (2012)Google Scholar
  14. 14.
    Khardon, R., Sanner, S.: Stochastic planning and lifted inference. arXiv preprint arXiv:1701.01048 (2017)
  15. 15.
    Kimmig, A., Mihalkova, L., Getoor, L.: Lifted graphical models: a survey. Mach. Learn. 99, 1–45 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kondor, R., Howard, A., Jebara, T.: Multi-object tracking with representations of the symmetric group. In: AISTATS, vol. 2, pp. 211–218 (2007)Google Scholar
  17. 17.
    Krüger, F., Nyolt, M., Yordanova, K., Hein, A., Kirste, T.: Computational state space models for activity and intention recognition. A feasibility study. PLOS ONE 9(11), e109381 (2014)CrossRefGoogle Scholar
  18. 18.
    Poole, D.: First-order probabilistic inference. In: IJCAI, pp. 985–991 (2003)Google Scholar
  19. 19.
    Ramírez, M., Geffner, H.: Goal recognition over POMDPs: inferring the intention of a POMDP agent. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 2009–2014, July 2011Google Scholar
  20. 20.
    Sanner, S., Boutilier, C.: Practical solution techniques for first-order MDPs. Artif. Intell. 173, 748–788 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: An office scenario dataset for benchmarking observation-equivalent entities (2016). http://dx.doi.org/10.18453/rosdok_id00000138
  22. 22.
    Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: Abstracting from observation-equivalent entities in human behavior modeling. In: AAAI Workshop: Plan, Activity, and Intent Recognition, February 2017Google Scholar
  23. 23.
    Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted probabilistic inference by first-order knowledge compilation. In: IJCAI, pp. 2178–2185 (2011)Google Scholar
  24. 24.
    Venugopal, D., Gogate, V.: Evidence-based clustering for scalable inference in Markov logic. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8726, pp. 258–273. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44845-8_17 Google Scholar
  25. 25.
    Wilson, D.H., Atkeson, C.: Simultaneous tracking and activity recognition (STAR) using many anonymous, binary sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005). doi: 10.1007/11428572_5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Max Schröder
    • 1
  • Stefan Lüdtke
    • 1
  • Sebastian Bader
    • 1
  • Frank Krüger
    • 1
  • Thomas Kirste
    • 1
  1. 1.Mobile Multimedia Information Systems Group, Institute of Computer ScienceUniversity of RostockRostockGermany

Personalised recommendations