Real-Time Public Transport Delay Prediction for Situation-Aware Routing

  • Lukas Heppe
  • Thomas LiebigEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10505)


Situation-aware route planning gathers increasing interest. The proliferation of various sensor technologies in smart cities allows the incorporation of real-time data and its predictions in the trip planning process. We present a system for individual multi-modal trip planning that incorporates predictions of future public transport delays in routing. Future delay times are computed by a Spatio-Temporal-Random-Field based on a stream of current vehicle positions. The conditioning of spatial regression on intermediate predictions of a discrete probabilistic graphical model allows to incorporate historical data, streamed online data and a rich dependency structure at the same time. We demonstrate the system with a real-world use-case at Warsaw city, Poland.



This research received funding under the Horizon 2020 programme, grant number 688380 VaVeL - Variety, Veracity, VaLue: Handling the Multiplicity of Urban Sensors. We gratefully thank Nico Piatkowski for supply of his STRF library, support and discussion.


  1. 1.
    Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route planning in transportation networks (2015). arXiv:1504.05140
  2. 2.
    Bast, H., Sternisko, J., Storandt, S.: Delay-robustness of transfer patterns in public transportation route planning. In: ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems-2013, vol. 33, pp. 42–54. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2013)Google Scholar
  3. 3.
    Bockermann, C., Blom, H.: The streams framework. Techical report 5, TU Dortmund University, December 2012. Accessed 28 Nov 2013
  4. 4.
    Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly simple and fast transit routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 43–54. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38527-8_6 CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., Weidlich, M.: Traveling time prediction in scheduled transportation with journey segments. Inf. Syst. 64, 266–280 (2015)CrossRefGoogle Scholar
  7. 7.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68552-4_24 CrossRefGoogle Scholar
  8. 8.
    Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., Schöbel, A.: The price of robustness in timetable information. In: OASIcs-OpenAccess Series in Informatics, vol. 20. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2011)Google Scholar
  9. 9.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  10. 10.
    Heinemann, U., Globerson, A.: What cannot be learned with Bethe approximations. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain (2011)Google Scholar
  11. 11.
    Higgins, A., Kozan, E.: Modeling train delays in urban networks. Transp. Sci. 32(4), 346–357 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theor. 47(2), 498–519 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liebig, T., Kemloh Wagoum, A.U.: Modelling microscopic pedestrian mobility using bluetooth. In: ICAART, pp. 270–275. SciTePress (2012)Google Scholar
  14. 14.
    Liebig, T., Peter, S., Grzenda, M., Junosza-Szaniawski, K.: Dynamic transfer patterns for fast multi-modal route planning. In: Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F. (eds.) GIScience 2017. LNGC, pp. 223–236. Springer, Cham (2017). doi: 10.1007/978-3-319-56759-4_13 CrossRefGoogle Scholar
  15. 15.
    Liebig, T., Piatkowski, N., Bockermann, C., Morik, K.: Dynamic route planning with real-time traffic predictions. Inf. Syst. 64, 258–265 (2017). CrossRefGoogle Scholar
  16. 16.
    Liebig, T., Xu, Z., May, M.: Incorporating mobility patterns in pedestrian quantity estimation and sensor placement. In: Nin, J., Villatoro, D. (eds.) CitiSens 2012. LNCS, vol. 7685, pp. 67–80. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36074-9_7 CrossRefGoogle Scholar
  17. 17.
    Mazimpaka, J.D., Timpf, S.: A visual and computational analysis approach for exploring significant locations and time periods along a bus route. In: Proceedings of the 9th ACM SIGSPATIAL International Workshop on Computational Transportation Science, pp. 43–48. ACM (2016)Google Scholar
  18. 18.
    Müller-Hannemann, M., Schnee, M.: Efficient timetable information in the presence of delays. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 249–272. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-05465-5_10 CrossRefGoogle Scholar
  19. 19.
    Niu, X., Zhu, Y., Cao, Q., Zhang, X., Xie, W., Zheng, K.: An online-traffic-prediction based route finding mechanism for smart city. Int. J. Distrib. Sens. Netw. 2015, 18 (2015)Google Scholar
  20. 20.
    Schnitzler, F., et al.: Heterogeneous stream processing and crowdsourcing for traffic monitoring: highlights. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8726, pp. 520–523. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44845-8_49 Google Scholar
  21. 21.
    Schnitzler, F., Liebig, T., Mannor, S., Souto, G., Bothe, S., Stange, H.: Heterogeneous stream processing for disaster detection and alarming. In: IEEE International Conference on Big Data, pp. 914–923. IEEE Press (2014)Google Scholar
  22. 22.
    Souto, G., Liebig, T.: On event detection from spatial time series for urban traffic applications. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds.) Solving Large Scale Learning Tasks. Challenges and Algorithms. LNCS, vol. 9580, pp. 221–233. Springer, Cham (2016). doi: 10.1007/978-3-319-41706-6_11 CrossRefGoogle Scholar
  23. 23.
    Utsch, P., Liebig, T.: Monitoring microscopic pedestrian mobility using bluetooth. In: 2012 8th International Conference on Intelligent Environments (IE), pp. 173–177. IEEE (2012)Google Scholar
  24. 24.
    Zygouras, N., Zacheilas, N., Kalogeraki, V., Kinane, D., Gunopulos, D.: Insights on a scalable and dynamic traffic management system. In: EDBT, pp. 653–664 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Science VIII: Artificial Intelligence UnitTU Dortmund UniversityDortmundGermany

Personalised recommendations