A Preliminary Assessment of the Genetic Diversity and Population Structure of Guava, Psidium guajava, in San Cristobal

Chapter
Part of the Social and Ecological Interactions in the Galapagos Islands book series (SESGI)

Abstract

The fragile ecosystems of the Galapagos Islands are prone to significant disruptions due to the presence of invasive species. One of these invaders, the guava tree (Psidium guajava), may pose a threat to numerous native plant species and ecosystems across the archipelago. In order to better understand the guava populations of the islands, a preliminary assessment of the genetic diversity of P. guajava from six collection sites in San Cristobal Island, and one continental sample, was performed through the analysis of SSR molecular markers. Various parameters regarding the species’ population genetics and structure were estimated for the samples through different approaches. The results suggest that, as an invasive species, P. guajava presents a reduced genetic diversity, probably as a consequence of a population bottleneck which most likely occurred during their introduction into San Cristobal. Individuals from the different collection sites show some evidence of genetic differentiation for some locations, but widespread gene flow appears to predominate. The diversity observed could be a product of either multiple introductions into the island or as a consequence of undergoing diversifying selection across different ecosystems within San Cristobal. These results have been contrasted with a similar analysis of the native guayabillo (Psidium galapageium), which shows a higher genetic diversity and a lack of population structure in the island. Further research should be conducted to better understand the current status of both species within the archipelago, their potential to form hybrids, and the possibility of P. guajava becoming a serious threat to the islands and their biodiversity.

Keywords

San Cristobal Psidium galapageium Psidium guajava Genetic diversity Endemic species Invasive species 

Notes

Acknowledgments

The authors would like to acknowledge the immense contributions of María José Ponce, Sara Ponce, Viviana Jaramillo, and Venancio Arahana in the collection of samples and genetic data for both plant species featured in this chapter. This project was funded by the Universidad San Francisco de Quito (USFQ) GAIAS Grants, complying with all permits and regulations from the Galapagos National Park and the Ministry of Environment.

References

  1. Abott RJ, James JK, Milne RI, Gillies ACM (2003) Plant introductions, hybridization and gene flow. Philos Trans R Soc Lond B Biol Sci 358(1434):1123–1132CrossRefGoogle Scholar
  2. Besnard G, Henry P, Wille L, Cooke D, Chapuis E (2007) On the origin of the invasive olives (Olea europaea L., Oleaceae). Heredity 99(6):608–619CrossRefGoogle Scholar
  3. Cain ML, Milligan MG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87(9):1217–1227CrossRefGoogle Scholar
  4. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445CrossRefGoogle Scholar
  5. Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29(1):51–63CrossRefGoogle Scholar
  6. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci U S A 97(13):7043–7050CrossRefGoogle Scholar
  7. Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327CrossRefGoogle Scholar
  8. Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12(3):665–675CrossRefGoogle Scholar
  9. Guézou A, Chamorro S, Pozo P, Guerrero AM, Atkinson R, Buddenhagen C, Jaramillo Díaz P, Gardener M (2014) CDF checklist of Galapagos introduced plants. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galapagos species checklist. Charles Darwin Foundation, Puerto Ayora, Galápagos. http://www.darwinfoundation.org/datazone/checklists/introduced-species/introduced-plants/. Last updated 21 Jan 2014Google Scholar
  10. Hamrick JL, Murawski DA, Nason DJ (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107/108:281–297Google Scholar
  11. Jaramillo Díaz P, Guézou A (2013) CDF checklist of Galapagos vascular plants. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galapagos species checklist. Charles Darwin Foundation, Puerto Ayora, Galapagos. http://www.darwinfoundation.org/datazone/checklists/vascular-plants/. Last updated 3 June 2013Google Scholar
  12. Jäger H, Tye A, Kowarik I (2007) Tree invasion in naturally treeless environments: impacts of quinine (Cinchona pubescens) trees on native vegetation in Galápagos. Biol Conserv 140(3):297–307Google Scholar
  13. Jäger H, Kowarik I, Tye A (2009) Destruction without extinction: long-term impacts of an invasive tree species on Galápagos highland vegetation. J Ecol 97:1252–1263Google Scholar
  14. Kanupriya, Latha PM, Aswath C, Reddy L, Padmakar B, Vasugi C, Dinesh MR (2011) Cultivar identification and genetic fingerprinting of guava (Psidium guajava) using microsatellite markers. Int J Fruit Sci 11(2):184–196CrossRefGoogle Scholar
  15. Lawesson JE, Ortiz L (1990) Plantas introducidas en las Islas Galápagos. In: Lawesson JE, Hamann O, Rogers G, Reck G, Ochoa H (eds) Botanical research and management in the Galapagos Islands. Monographs in systematic botany from the Missouri botanical garden, vol 32. pp 15–20Google Scholar
  16. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17(8):386–391CrossRefGoogle Scholar
  17. Loh RK, Daehler CC (2008) Influence of woody invader control methods and seed availability on native and invasive species establishment in a Hawaiian forest. Biol Invasions 10(6):805–819CrossRefGoogle Scholar
  18. López-Caamal A, Cano-Santana Z, Jiménez-Ramírez J, Ramírez-Rodríguez R, Tovar Sánchez E (2014) Is the insular endemic Psidium socorrense (Myrtaceae) at risk of extinction through hybridization? Plant Syst Evol 300:1959–1972CrossRefGoogle Scholar
  19. Mauchamp A (1997) Threats from alien plant species in the Galapagos Islands. Conserv Biol 11(1):260–263CrossRefGoogle Scholar
  20. McMullen CK (1999) Flowering plants of the Galápagos. Cornell University Press, IthacaGoogle Scholar
  21. Nakasone HY, Paull RE (1998) Tropical fruits. CAB International, Oxon, 433 pGoogle Scholar
  22. Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A (2008) Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23(11):638–647CrossRefGoogle Scholar
  23. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Int J Org Evol 29(1):1–10CrossRefGoogle Scholar
  24. Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer Associates Inc., Sunderland, pp 201–228. Schofield EK (1989) Effects of introduced plants and animals on island vegetation: examples from the Galapagos archipelago. Conserv Biol 3:227–238Google Scholar
  25. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959Google Scholar
  26. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237CrossRefGoogle Scholar
  27. Rendell RA, Howarth DG, Morden CW (2004) Genetic analysis of natural hybrids between endemic and alien Rubus (Rosaceae) species in Hawai’i. Conserv Genet 5:217–230CrossRefGoogle Scholar
  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425Google Scholar
  29. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 35:305–332CrossRefGoogle Scholar
  30. Scalera R, Genovesi P, Essl F, Rabitsch W (2012) The impacts of invasive alien species in Europe. Publication Office of the European Union, Copenhagen, 114p. EEA Technical Report No. 16/2012Google Scholar
  31. Slevin JR (1959) The Galapagos Islands. A history of their exploration. Occasional Papers of the California. Acad Sci 25:1–150Google Scholar
  32. Stuessy TF, Takayama K, López-Sepúlveda P, Crawford DJ (2014) Interpretation of patterns of genetic variation in endemic plant species of oceanic islands. Bot J Linn Soc 174:276–288CrossRefGoogle Scholar
  33. Tye A (1999) Invasive plant problems and requirements for weed risk assessment in the Galapagos Islands. Paper presented at: 1st international weed risk assessment workshop, AdelaideGoogle Scholar
  34. Tye A (2002) Revisión del estado de amenaza de la flora endémica de Galápagos. In: Informe Galápagos 2001-2002. WWF-Fundación Natura, Quito, pp 116–122Google Scholar
  35. Velasco M (2002) Percepciones de la población de Galápagos sobre las especies introducidas y el Sistema de Inspección y Cuarentena para Galápagos (SICGAL). Parque Nacional Galápagos, Charles Darwin Foundation and GEF, QuitoGoogle Scholar
  36. Walsh SJ, McCleary AL, Mena CF, Shao Y, Tuttle JP, González A, Atkinson R (2008) QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: implications for control and land use management. Remote Sens Environ 112(5):1927–1941CrossRefGoogle Scholar
  37. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396Google Scholar
  38. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370Google Scholar
  39. Yadava UL (1996) Guava (Psidium guajava L.): an exotic tree fruit with potential in the southeastern United States. HortScience 31(5):789–794Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • María de Lourdes Torres
    • 1
    • 2
  • Bernardo Gutiérrez
    • 3
  1. 1.Laboratorio de Biotecnología VegetalColegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de QuitoQuitoEcuador
  2. 2.UNC-USFQ Galapagos Science CenterUniversidad San Francisco de QuitoQuitoEcuador
  3. 3.Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y AmbientalesQuitoEcuador

Personalised recommendations