Advertisement

Variational-Monolithic ALE Fluid-Structure Interaction: Comparison of Computational Cost and Mesh Regularity Using Different Mesh Motion Techniques

  • Thomas WickEmail author
Conference paper

Abstract

In this contribution, different mesh motion models for fluid-structure interaction (FSI) are revisited. The FSI problem is formulated by variational-monolithic coupling in the reference configuration employing the arbitrary-Lagrangian Eulerian (ALE) framework. The goal is to further analyze three different mesh motion models; namely nonlinear harmonic, nonlinear elastic, and linear biharmonic. The novelty in this contribution is a detailed computational analysis of the regularity of the ALE mapping and cost complexity for the nonstationary FSI-2 benchmark problem with large solid deformations.

References

  1. 1.
    Bazilevs, Y., Takizawa, K., Tezduyar, T.: Computational Fluid-Structure Interaction: Methods and Applications. Wiley (2013)Google Scholar
  2. 2.
    Budd, C.J., Huang, W., Russell, R.D.: Adaptivity with moving grids. Acta Numer. 18, 111–241 (2009). https://doi.org/10.1017/S0962492906400015 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bungartz, H.J., Schäfer, M.: Fluid-Structure Interaction: Modelling, Simulation, Optimization. Lecture Notes in Computational Science and Engineering, vol. 53. Springer (2006)Google Scholar
  4. 4.
    Donea, J., Giuliani, S., Halleux, J.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33, 689–723 (1982)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dunne, T., Richter, T., Rannacher, R.: Numerical simulation of fluid-structure interaction based on monolithic variational formulations, pp. 1–75. Contemporary Challenges in Mathematical Fluid Mechanics. Springer, World Scientific, Singapore (2010)Google Scholar
  6. 6.
    Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7, 105–132 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Helenbrook, B.T.: Mesh deformation using the biharmonic operator. Int. J. Numer. Methods Eng. 56(7), 1007–1021 (2003). http://dx.doi.org/10.1002/nme.595 CrossRefzbMATHGoogle Scholar
  8. 8.
    Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hron, J., Turek, S.: Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between an Elastic Object and Laminar Incompressible Flow, vol. 53, pp. 146–170. Springer, Berlin (2006)Google Scholar
  11. 11.
    Hughes, T., Liu, W., Zimmermann, T.: Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rannacher, R.: On the stabilization of the Crank-Nicolson scheme for long time calculations (1986). PreprintGoogle Scholar
  13. 13.
    Richter, T., Wick, T.: On time discretizations of fluid-structure interactions. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition Methods, pp. 377–400. Contributions in Mathematical and Computational Science (2015). http://www.springer.com/us/book/9783319233208
  14. 14.
    Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure interactions with large displacements. J. Appl. Mech. 70, 58–63 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tezduyar, T.E., Behr, M., Mittal, S., Johnson, A.A.: Computation of Unsteady Incompressible Flows With the Finite Element Methods Space-Time Formulations, Iterative Strategies and Massively Parallel Implementations, New Methods in Transient Analysis, PVP-Vol. 246, AMD-Vol. 143, vol. 143, pp. 7–24. ASME, New York (1992)Google Scholar
  16. 16.
    Wick, T.: Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics. Ph.D. thesis, University of Heidelberg (2011). http://www.ub.uni-heidelberg.de/archiv/12992
  17. 17.
    Wick, T.: Fluid-structure interactions using different mesh motion techniques. Comput. Struct. 89(13–14), 1456–1467 (2011)CrossRefGoogle Scholar
  18. 18.
    Wick, T.: Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal. II library. Arch. Numer. Softw. 1, 1–19 (2013). http://www.archnumsoft.org Google Scholar
  19. 19.
    Wick, T.: Modeling, discretization, optimization, and simulation of fluid-structure interaction. Lecture notes at Heidelberg University and TU Munich (2015). https://www-m17.ma.tum.de/Lehrstuhl/LehreSoSe15NMFSIEn
  20. 20.
    Wick, T., Wollner, W.: On the differentiability of fluid-structure interaction problems with respect to the problem data. RICAM report 2014–16 (2014). Available on http://www.ricam.oeaw.ac.at/publications/reports/
  21. 21.
    Winslow, A.M.: Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh. J. Comput. Phys. 1(2), 149–172 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yigit, S., Schäfer, M., Heck, M.: Grid movement techniques and their influence on laminar fluid-structure interaction problems. J. Fluids Struct. 24(6), 819–832 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fakultät für Mathematik, Lehrstuhl M17Technische Universität MünchenGarching near MünchenGermany
  2. 2.RICAM, Austrian Academy of SciencesLinzAustria

Personalised recommendations