Skip to main content

High-order Connectomic Manifold Learning for Autistic Brain State Identification

  • Conference paper
  • First Online:
Connectomics in NeuroImaging (CNI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10511))

Included in the following conference series:

Abstract

Previous studies have identified disordered functional (from fMRI) and structural (from diffusion MRI) brain connectivities in Autism Spectrum Disorder (ASD). However, ‘shape connections’ between brain regions were rarely investigated in ASD – e.g., how morphological attributes of a specific brain region (e.g., sulcal depth) change in relation to morphological attributes in other regions. In this paper, we use conventional T1-w MRI to define morphological connectivity networks, each quantifying shape similarity between different cortical regions for a specific cortical attribute at both low-order and high-order levels. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectomic features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fcon_1000.projects.nitrc.org/indi/abide/.

References

  1. Price, T., Wee, C.-Y., Gao, W., Shen, D.: Multiple-network classification of childhood autism using functional connectivity dynamics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 177–184. Springer, Cham (2014). doi:10.1007/978-3-319-10443-0_23

    Google Scholar 

  2. Koshino, H., Carpenter, P.A., Minshew, N.J., Cherkassky, V.L., Keller, T.A., Just, M.A.: Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 24, 810–21 (2005)

    Article  Google Scholar 

  3. Uddin, L.Q., Supekar, K., Lynch, C.J., Khouzam, A., Phillips, J., Feinstein, C., Ryali, S., Menon, V.: Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869–879 (2013)

    Article  Google Scholar 

  4. Liu, M., Du, J., Jie, B., Zhang, D.: Ordinal patterns for connectivity networks in brain disease diagnosis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 1–9. Springer, Cham (2016). doi:10.1007/978-3-319-46720-7_1

    Chapter  Google Scholar 

  5. Ghanbari, Y., Smith, A.R., Schultz, R.T., Verma, R.: Connectivity subnetwork learning for pathology and developmental variations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 90–97. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_12

    Chapter  Google Scholar 

  6. Jbabdi, S., Johansen-Berg, H.: Tractography: where do we go from here? Brain Connect 1, 169–183 (2012)

    Article  Google Scholar 

  7. Smith, E., Thurm, A., Greenstein, D., Farmer, C., Swedo, S., Giedd, J., Raznahan, A.: Cortical thickness change in autism during early childhood. Hum. Brain Mapp. 37, 2616–2629 (2016)

    Article  Google Scholar 

  8. Chen, X., Zhang, H., Shen, D.: Ensemble hierarchical high-order functional connectivity networks for MCI classification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 18–25. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_3

    Chapter  Google Scholar 

  9. Brown, C., Hamarneh, G.: Machine learning on human connectome data from MRI, arXiv:1611.08699v1 (2016)

  10. Iidaka, T.: Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex 63, 55–67 (2014). Elsevier

    Article  Google Scholar 

  11. Li, H., Xue, Z., Ellmore, T.M., Frye, R.E., Wong, S.T.: Identification of faulty DTI-based sub-networks in autism using network regularized SVM. In: IEEE ISBI (2012)

    Google Scholar 

  12. Wang, X., Sontag, D., Wang, F.: Unsupervised learning of disease progression models. In: Proceedings of the KDD 2014, pp. 85–94 (2014)

    Google Scholar 

  13. Gao, H., et al.: Identifying connectome module patterns via new balanced multi-graph normalized cut. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 169–176. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_21

    Chapter  Google Scholar 

  14. Chen, H., Iraji, A., Jiang, X., Lv, J., Kou, Z., Liu, T.: Longitudinal analysis of brain recovery after mild traumatic brain injury based on groupwise consistent brain network clusters. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 194–201. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_24

    Chapter  Google Scholar 

  15. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis of single-cell RNA-SEQ data by kernel-based similarity learning. Nature 70, 869–79 (2017)

    Google Scholar 

  16. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  17. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. North Am. 10, 869–877 (2005)

    Article  Google Scholar 

  18. Joe, H., Ward, J.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Rekik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Soussia, M., Rekik, I. (2017). High-order Connectomic Manifold Learning for Autistic Brain State Identification. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B. (eds) Connectomics in NeuroImaging. CNI 2017. Lecture Notes in Computer Science(), vol 10511. Springer, Cham. https://doi.org/10.1007/978-3-319-67159-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67159-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67158-1

  • Online ISBN: 978-3-319-67159-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics