Skip to main content

Concept, Development, and Application of Computational Methods for the Analysis and Integration of Omics Data

  • Chapter
  • First Online:
Plant Bioinformatics

Abstract

Bioinformatic approaches play a very important role in omics to understand the plant science. These omic-based advance techniques have provided crucial resource to researcher to study the plant biology in model and non-model plants. In this chapter we have discussed few fundamentals of omics techniques and their analysis pipeline in genomics, transcriptomics, small RNA, gene annotation and other emerging techniques like genotyping by sequencing, tilling, etc. Furthermore, integration of omics data at all levels has become a major challenge as the amount of omics data is increasing at a rapid space. In this chapter, we have attempted to put forward few important applications of different omics techniques such as genomics, transcriptomics, proteomics, and metabolomics in plant science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis Thaliana. Genome Res 15(1):78–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad S (2013) Plant metabolomics: techniques, applications, trends, and challenges. In: OMICS: applications in biomedical, agricultural, and environmental sciences. CRC Press, Boca Raton, pp 451–478

    Chapter  Google Scholar 

  • An J, Lai J, Sajjanhar A, Lehman ML, Nelson CC (2014) miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinforma 15(1):275

    Article  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au KF, Jiang H, Lin L, Xing Y, Wong WH (2010) Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res 38(14):4570–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker M (2012) De novo genome assembly: what every biologist should know. Nat Methods 9(4):333

    Article  CAS  Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9(9):418–425

    Article  CAS  PubMed  Google Scholar 

  • Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4):578–579

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26(12):1566–1568

    Article  CAS  PubMed  Google Scholar 

  • Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S, Chapman JA, Chapuis G, Chikhi R, Chitsaz H (2013) Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience 2(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EV, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2012) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 3:gks1005

    Google Scholar 

  • Carra A, Mica E, Gambino G, Pindo M, Moser C, Pè ME, Schubert A (2009) Cloning and characterization of small non-coding RNAs from grape. Plant J 59(5):750–763

    Article  CAS  PubMed  Google Scholar 

  • Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3: genes. Genomes Genet 1(3):171–182

    CAS  Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22(11):3124–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, Cramer CL, Huang X (2015) Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol 16(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chellappan P, Jin H (2009) Discovery of plant microRNAs and short-interfering RNAs by deep parallel sequencing. Plant Hormones: Methods Protocols 495:121–132

    Article  CAS  Google Scholar 

  • Claros MG, Bautista R, Guerrero-Fernández D, Benzerki H, Seoane P, Fernández-Pozo N (2012) Why assembling plant genome sequences is so challenging. Biology 1(2):439–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Interactome: gateway into systems biology. Hum Mol Genet 14(suppl 2):R171–R181

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(suppl 2):W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Schutter K, Van Damme EJ (2015) Protein-carbohydrate interactions as part of plant defense and animal immunity. Molecules 20(5):9029–9053

    Article  PubMed  CAS  Google Scholar 

  • Denman RB (1993) Using RNAFOLD to predict the activity of small catalytic RNAs. BioTechniques 15(6):1090–1095

    CAS  PubMed  Google Scholar 

  • Dhanapal AP, Govindaraj M (2015) Unlimited thirst for genome sequencing, data interpretation, and database usage in genomic era: the road towards fast-track crop plant improvement. Genet Res Int 2015:684321

    PubMed  PubMed Central  Google Scholar 

  • Dimon MT, Sorber K, DeRisi JL (2010) HMMSplicer: a tool for efficient and sensitive discovery of known and novel splice junctions in RNA-Seq data. PLoS One 5(11):e13875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal Chem 24(4):285–294

    Article  CAS  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • El-Metwally S, Hamza T, Zakaria M, Helmy M (2013) Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput Biol 9(12):e1003345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evers JB, Vos J, Chelle M, Andrieu B, Fournier C, Struik PC (2007) Simulating the effects of localized red: far-red ratio on tillering in spring wheat (Triticum Aestivum) using a three-dimensional virtual plant model. New Phytol 176(2):325–336

    Article  PubMed  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2009) Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13(5):532–538

    Article  CAS  PubMed  Google Scholar 

  • Gleave AP, Ampomah-Dwamena C, Berthold S, Dejnoprat S, Karunairetnam S, Nain B, Wang YY, Crowhurst RN, MacDiarmid RM (2008) Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags. Tree Genet Genomes 4(2):343–358

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(suppl 1):D154–D158

    CAS  PubMed  Google Scholar 

  • Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenberg M, Rodríguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in highthroughput sequencing experiments. Nucleic Acids Res 39(suppl_2):W132–W138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62:411–435

    Article  CAS  PubMed  Google Scholar 

  • Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH (2010) miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res 39:D163–D169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu H, Rashotte AM, Singh NK, Weaver DB, Goertzen LR, Singh SR, Locy RD (2015) The complexity of posttranscriptional small RNA regulatory networks revealed by in silico analysis of Gossypium Arboreum L. leaf, flower and boll small regulatory RNAs. PLoS One 10(6):e0127468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang TH, Fan B, Rothschild MF, Hu ZL, Li K, Zhao SH (2007) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinforma 8(1):341

    Article  CAS  Google Scholar 

  • Huang S, Zhang J, Li R, Zhang W, He Z, Lam TW, Peng Z, Yiu SM (2011) SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq data. Front Genomic Assay Technol 2:46

    Google Scholar 

  • Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ (2012) A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. Am J Bot 99(2):383–396

    Article  CAS  PubMed  Google Scholar 

  • Jia XL, Li MY, Jiang Q, Xu ZS, Wang F, Xiong AS (2015) High-throughput sequencing of small RNAs and anatomical characteristics associated with leaf development in celery. Sci Rep 5:11093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagale S, Koh C, Clarke WE, Bollina V, Parkin IA, Sharpe AG (2016) Analysis of Genotyping-by-Sequencing (GBS) Data. Plant Bioinform: Methods Protocols 1374:269–284

    Article  CAS  Google Scholar 

  • Kant MR, Baldwin IT (2007) The ecogenetics and ecogenomics of plant–herbivore interactions: rapid progress on a slippery road. Curr Opin Genet Dev 17(6):519–524

    Article  CAS  PubMed  Google Scholar 

  • Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tissue Organ Cult (PCTOC) 118(2):279–292

    Article  CAS  Google Scholar 

  • Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis Thaliana. Plant Cell Physiol 49(10):1580–1588

    Article  CAS  PubMed  Google Scholar 

  • King GJ (2004) Bioinformatics: harvesting information for plant and crop science. In: Seminars in cell & developmental biology (Vol. 15, No. 6, pp. 721–731). Academic Press

    Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M (2011) TILLING-a shortcut in functional genomics. J Appl Genet 52(4):371

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau NS, Makita Y, Kawashima M, Taylor TD, Kondo S, Othman AS, Shu-Chien AC, Matsui M (2016) The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Sci Rep 6:28594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin B (2003) Genes VIII. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma 12(1):323

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12(2):107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Shi Y, Yuan J, Hu X, Zhang H, Li N, Li Z, Chen Y, Mu D, Fan W (2013) Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv preprint arXiv:1308.2012.

    Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik A. (2016) Genomics resources for plants. In: Plant omics: trends and applications. Springer International Publishing, pp 29–57

    Google Scholar 

  • Malik A, Lee J, Lee J (2014) Community-based network study of protein-carbohydrate interactions in plant lectins using glycan array data. PLoS One 9(4):e95480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced locallesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Gou L, Chen D, Mao C, Jin Y, Wu P, Chen M (2010) PmiRKB: a plant microRNA knowledge base. Nucleic Acids Res 39:D181–D187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6(2)

    Google Scholar 

  • Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, Sutton G (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24(24):2818–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52(12):2017–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgenthal K, Weckwerth W, Steuer R (2006) Metabolomic networks in plants: transitions from pattern recognition to biological interpretation. Biosystems 83(2):108–117

    Article  CAS  PubMed  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Mérida A, Perkins JR, Viguera E, Thode G, Bejarano ER, Pérez-Pulido AJ (2012) Semirna: searching for plant miRNAs using target sequences. Omics: J Integr Biol 16(4):168–177

    Article  CAS  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL (2000) A whole-genome assembly of Drosophila. Science 287(5461):2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15(3):R59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11(10):1725–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobuta K, Vemaraju K, Meyers BC (2007) Methods for analysis of gene expression in plants using MPSS. Plant Bioinforma: Methods and Protocols 406:387–407

    Article  CAS  Google Scholar 

  • Numnark S, Mhuantong W, Ingsriswang S, Wichadakul D (2012) C-mii: a tool for plant miRNA and target identification. BMC Genomics 13(7):S16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23(9):1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Leung HC, Yiu SM, Chin FY (2010) IDBA–a practical iterative de Bruijn graph de novo assembler. In: Annual International Conference on Research in Computational Molecular Biology. Springer, Berlin, pp 426–440

    Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, Hou S, Ong SY, Ng FL, Lee LS, Tan HS (2013) Draft genome sequence of the rubber tree Hevea Brasiliensis. BMC Genomics 14(1):75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rampitsch C, Srinivasan M (2006) The application of proteomics to plant biology: a review. Botany 84(6):883–892

    CAS  Google Scholar 

  • Reddy TV, Dwivedi S, Sharma NK (2012) Development of TILLING by sequencing platform towards enhanced leaf yield in tobacco. Ind Crop Prod 40:324–335

    Article  CAS  Google Scholar 

  • Rhee SY, Dickerson J, Xu D (2006) Bioinformatics and its applications in plant biology. Annu Rev Plant Biol 57:335–360

    Article  CAS  PubMed  Google Scholar 

  • Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10(1):71–73

    Article  CAS  PubMed  Google Scholar 

  • Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7(11):909–912

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010 Jan 1) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  • Sablok G, Milev I, Minkov G, Minkov I, Varotto C, Yahubyan G, Baev V (2013) isomiRex: web-based identification of microRNAs, isomiR variations and differential expression using next-generation sequencing datasets. FEBS Lett 587(16):2629–2634

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatz MC, Maron LG, Stein JC, Wences AH, Gurtowski J, Biggers E, Lee H, Kramer M, Antoniou E, Ghiban E, Wright MH (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza Sativa, document novel gene space of aus and indica. Genome Biol 15(11):506

    PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ, Zhang X (2011) High-throughput approaches for plant epigenomic studies. Curr Opin Plant Biol 14(2):130–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setia RC and Setia N. (2008) The ‘-omics’ technologies and crop improvement R.C. crop improvement: strategies and applications

    Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P (2011) The genome of woodland strawberry (Fragaria Vesca). Nat Genet 43(2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  PubMed  CAS  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227(1):245–254

    Article  CAS  PubMed  Google Scholar 

  • Song C, Wang C, Zhang C, Korir NK, Yu H, Ma Z, Fang J (2010) Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus Trifoliata). BMC Genomics 11(1):431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34(suppl 2):W435–W439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28(15):2059–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Dong B, Yin L, Zhang R, Du W, Liu D, Shi N, Li A, Liang Y, Mao L (2013) PMTED: a plant microRNA target expression database. BMC Bioinforma 14(1):174

    Article  CAS  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8(1):37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS (2003) The COG database: an updated version includes eukaryotes. BMC Bioinforma 4(1):41

    Article  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi A, Goswami K, Sanan-Mishra N (2015) Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution. Front Physiol 6:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4(10):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dam NM (2009) How plants cope with biotic interactions. Plant Biol 11(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD (2012) Draft genome sequence of pigeonpea (Cajanus Cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83–89

    Article  CAS  Google Scholar 

  • Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Cell 144(6):986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010a) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN (2010b) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S (2015) Recent progress in the use of ‘omics technologies in brassicaceous vegetables. Front Plant Sci 6:244

    PubMed  PubMed Central  Google Scholar 

  • Worley KC (2014) Improving genomes using long reads and PBJelly 2. In: Plant and animal genome XXII conference. Plant and Animal Genome

    Google Scholar 

  • Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, Sheng Sun Z, Shi Q (2013) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10(7):1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Ma J, Sun Y, Yao Y (2015) A method for the further assembly of targeted unigenes in a transcriptome after assembly by Trinity. Front Plant Sci 6:843

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica Napus. FEBS Lett 581(7):1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30(12):1660–1666

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27(18):2614–2615

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Qu LH (2012) DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data. Next-Generation Microrna Expression Profiling Technology: Methods and Protocols 822:233–248

    Article  CAS  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, George PC, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15(5):336–360

    Article  PubMed  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46(2):243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229(1):161–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao P, Yuan JS (2010a) Plant protein-protein interaction network and interactome. Curr Genomics 11(1):40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010b) PMRD: plant microRNA database. Nucleic Acids Res 38(suppl 1):D806–D813

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chen J, Yang Y, Tang Y, Shang J, Shen B (2011) A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies. PLoS One 6(3):e17915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yu M, Yu H, Han J, Song C, Ma R, Fang J (2012) Computational identification of microRNAs in peach expressed sequence tags and validation of their precise sequences by miR-RACE. Mol Biol Rep 39(2):1975–1987

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yue Y, Sheng L, Wu Y, Fan G, Li A, Hu X, ShangGuan M, Wei C (2013) PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 13(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Jiang L, Wang J, Chen M (2014) MTide: an integrated tool for the identification of miRNA-target interaction in plants. Bioinformatics 31:290–291

    Article  PubMed  CAS  Google Scholar 

  • Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 29(21):2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, A., Mehta, A. (2017). Concept, Development, and Application of Computational Methods for the Analysis and Integration of Omics Data. In: Hakeem, K., Malik, A., Vardar-Sukan, F., Ozturk, M. (eds) Plant Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-67156-7_9

Download citation

Publish with us

Policies and ethics