Skip to main content

Systems-Based Approach to the Analyses of Plant Functions: Conceptual Understanding, Implementation, and Analysis

  • Chapter
  • First Online:
Plant Bioinformatics

Abstract

Systems biology is a systemic approach for the study of biological systems through the constructive alignment of biological interests (genetics, physiology, or biochemical), monitoring of molecular determinants (gene, protein, and metabolite), information processing and responses (metabolic and signaling pathway behavior), data integration, and ultimately formulation of mathematical models for the elucidation of structure and function of the system and system perturbations. Therefore, integration of computational and experimental research is a fundamental requirement of systems biology. The recent advancements in computational resources and high-throughput techniques (DNA microarrays, next-generation sequencing, proteomics, and metabolomics) for the processing of a large number of biological samples have increased the pace of systems biology research in plant science. Systems biology approaches have been employed on the cell, tissue, organ, and whole-plant level in various studies for the understanding of plant structure and function and reported the discovery of new genes, transcription factors, regulators, gene regulation networks, promoter sites, and pathways and their functional characterization in varying physiological and environmental conditions. These cutting-edge researches have allowed us to address the complexity of biological systems for plant structure and functions. This chapter discusses how to predict plant function in different homeostasis utilizing systems biology-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19(11):1853–1861

    Article  CAS  PubMed  Google Scholar 

  • Assmann SM, Albert R (2009) Discrete dynamic modeling with asynchronous update, or how to model complex systems in the absence of quantitative information. Plant Syst Biol 553:207–225

    Article  CAS  Google Scholar 

  • Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14(3):283–291

    Article  CAS  PubMed  Google Scholar 

  • Bassel GW, Gaudinier A, Brady SM, Hennig L, Rhee SY, De Smet I (2012) Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. Plant Cell 24(10):3859–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum B, Craig G (2004) RNAi in a postmodern, postgenomic era. Oncogene 23(51):8336–8339

    Article  CAS  PubMed  Google Scholar 

  • Beer MA, Tavazoie S (2004) Predicting gene expression from sequence. Cell 117(2):185–198

    Article  CAS  PubMed  Google Scholar 

  • Bencharit S, Border MB, Edelmann A, Byrd WC (2013) Update in research and methods in proteomics and bioinformatics. Expert Rev Proteomics 10(5):413–415

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Geisler M, Trygg J, Huner N, Hurry V (2006) Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Plant Physiol 141(4):1219–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj N, Lu H (2005) Correlation between gene expression profiles and protein–protein interactions within and across genomes. Bioinformatics 21(11):2730–2738

    Article  CAS  PubMed  Google Scholar 

  • Bi YM, Kant S, Clark J, Gidda S, Ming F, Xu J, Rochon A, Shelp BJ, Hao L, Zhao R, Mullen RT (2009) Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ 32(12):1749–1760

    Article  Google Scholar 

  • Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17(12):3257–3281

    Article  PubMed  PubMed Central  Google Scholar 

  • Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8(6):437–449

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, Cherry JM, Ashburner M, Ball CA, Blake JA, Butler H, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber AP (2014) Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. J Exp Bot 65(13):3579–3593

    Article  PubMed  PubMed Central  Google Scholar 

  • Bumgarner R (2013) Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol Chapter 22:Unit 22.1

    Google Scholar 

  • Carstens M, McCrindle TK, Adams N, Diener A, Guzha DT, Murray SL, Parker JE, Denby KJ, Ingle RA (2014) Increased resistance to biotrophic pathogens in the Arabidopsis constitutive induced resistance 1 mutant is EDS1 and PAD4-dependent and modulated by environmental temperature. PLoS One 9(10):e109853

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genom Prot 2009:1–22

    Article  Google Scholar 

  • Chen WJ, Zhu T (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9(12):591–596

    Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448(7152):497

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353(6339):31–37

    Article  CAS  PubMed  Google Scholar 

  • De Folter S, Immink RG, Kieffer M, Pařenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17(5):1424–1433

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehlenborg N, O'Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68

    Article  CAS  PubMed  Google Scholar 

  • Geisberg JV, Struhl K (2004) Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nucleic Acids Res 32(19):e151

    Article  PubMed  PubMed Central  Google Scholar 

  • Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma 14(1):7

    Article  Google Scholar 

  • Hirschhorn JN, Sklar P, Lindblad-Toh K, Lim YM, Ruiz-Gutierrez M, Bolk S, Langhorst B, Schaffner S, Winchester E, Lander ES (2000) SBE-TAGS: an array-based method for efficient single-nucleotide polymorphism genotyping. Proc Natl Acad Sci 97(22):12164–12169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JX, Thomas CE, Brunak S (2016) Network biology concepts in complex disease comorbidities. Nat Rev Genet 17:615–629

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • Hui P (2012) Next generation sequencing: chemistry, technology and applications. In: Chemical diagnostics. Springer, Berlin, pp 1–18

    Google Scholar 

  • Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the petunia MADS-box transcription factor family. Mol Gen Genomics 268(5):598–606

    CAS  Google Scholar 

  • Johnson CH, Ivanisevic J, Benton HP, Siuzdak G (2014) Bioinformatics: the next frontier of metabolomics. Anal Chem 87(1):147–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwal S, Ashraf M, Shahbaz M, Iqbal MY (2013) Influence of saline stress on growth, gas exchange, mineral nutrients and non-enzymatic antioxidants in mungbean [(Vigna radiata (L.) Wilczek]. Pak J Bot 45(3):763–771

    Google Scholar 

  • Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99(2):248–256

    Article  PubMed  Google Scholar 

  • Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21(7):1109–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58(1):373–391

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma 12:323

    Article  CAS  Google Scholar 

  • Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4(10):e312

    Article  PubMed  PubMed Central  Google Scholar 

  • Long TA, Brady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol 24:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Gong Q, Bohnert HJ (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Res 17(11):1614–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik A, Lee J, Lee J (2014) Community-based network study of protein-carbohydrate interactions in plant lectins using glycan array data. PLoS One 9(4):e95480

    Article  PubMed  PubMed Central  Google Scholar 

  • McCormack ME, Lopez JA, Crocker TH, Shahid Mukhtar M (2016) Making the right connections: network biology and plant immune system dynamics. Curr Plant Biol 5:2–12

    Article  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Pandey D, Singh M, Kumar A (2011) Involvement of hsr203J like gene homologue, protease and protease inhibitors in triggering differential defense response against Alternaria blight in Brassica. Australas Plant Pathol 40(5):461

    Article  CAS  Google Scholar 

  • Nachman I, Regev A, Friedman N (2004) Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(suppl 1):i248–i256

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rischer H, Orešič M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MC, Inzé D, Oksman-Caldentey KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci 103(14):5614–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheth BP, Thaker VS (2014) Plant systems biology: insights, advances and challenges. Planta 240(1):33–54

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology–based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5(1):1

    Article  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Cairns MJ (2014) SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing. Bioinformatics 30:1777–1779. btu090

    Article  CAS  PubMed  Google Scholar 

  • Yadav BS, Lahav T, Reuveni E, Chamovitz DA, Freilich S (2016) Multidimensional patterns of metabolic response in abiotic stress-induced growth of Arabidopsis thaliana. Plant Mol Biol 15:1–1

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CN (2008) Plant systems biology comes of age. Trends Plant Sci 13(4):165–171

    Article  CAS  PubMed  Google Scholar 

  • Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de los Reyes BG (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10(1):1

    Article  Google Scholar 

  • Zhao G, Jiang K, Zhang T, Wu H, Qiu C, Deng G (2016) Specific interferon tau gene-regulation networks in bovine endometrial luminal epithelial cells. Theriogenology 105:51–60

    Article  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004a) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40(1):22–34

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004b) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulak KG, Cornish A, Daskalchuk TE, Deyholos MK, Goodenowe DB, Gordon PM, Klassen D, Pelcher LE, Sensen CW, Facchini PJ (2007) Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta 225(5):1085–1106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Singh Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, B.S., Singh, A.K., Kushwaha, S.K. (2017). Systems-Based Approach to the Analyses of Plant Functions: Conceptual Understanding, Implementation, and Analysis. In: Hakeem, K., Malik, A., Vardar-Sukan, F., Ozturk, M. (eds) Plant Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-67156-7_2

Download citation

Publish with us

Policies and ethics