Skip to main content

Application: Nitrate Reduction Processes

  • 574 Accesses

Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)

Abstract

The coupled reactive transport code (“OGS#IPhreeqc”) is applied to a pyrite-driven denitrification of nitrate-contaminated groundwater scenario. This nitrate reactive transport model is a simplification of the model involving both autotrophic and heterotrophic denitrification processes based on results from a field study in the Hessian Ried, Germany Kludt et al., (2016). For the interested reader, more detail information can be found in Jang et al., (2017).

Keywords

  • Nitrate Reduction Process
  • Heterotrophic Denitrification
  • PHREEQC Input File
  • Nite Traces
  • Left Navigation Menu

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

References

  • C. Kludt, F.-A. Weber, A. Bergmann, K. Knöller, G. Berthold, C. Schüth. Identifizierung der nitratabbauprozesse und prognose des nitratabbaupotenzials in den sedimenten des hessischen rieds. Grundwasser, 21(3) 227–241 Sep 2016 ISSN 1432-1165, https://doi.org/10.1007/s00767-015-0317-5

  • E. Jang, W. He, H. Savoy, P. Dietrich, O. Kolditz, Y. Rubin, C. Schüth, T. Kalbacher, Identifying the influential aquifer heterogeneity factor on nitrate reduction processes by numerical simulation. Adv. in Water Resour. 99, 38–52 (2017), https://doi.org/10.1016/j.advwatres.2016.11.007

  • A. M. Fan , V. E. Steinberg, Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol. 23(1), 35 – 43 (1996). ISSN 0273-2300, http://dx.doi.org/10.1006/rtph.1996.0006

  • A. J. P. Smolders, E. C. H. E. T. Lucassen, R. Bobbink, J. G. M. Roelofs, L. P. M. Lamers, How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. B.geochem. 98(1) 1–7, Apr 2010. ISSN 1573-515X, https://doi.org/10.1007/s10533-009-9387-8

  • S. F. Korom, Natural denitrification in the saturated zone: A review. Water Resour. Res. 28(6), 1657–1668 (1992). ISSN 1944-7973, http://doi.org/10.1029/92WR00252

  • M. O. Rivett, S. R. Buss, P. Morgan, J. W. N. Smith, C. D. Bemment, Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 42(16), 4215 – 4232 (2008). ISSN 0043-1354, http://www.sciencedirect.com/science/article/pii/S0043135408002984

  • S.J. Bailey, A. Vanhatalo, P.G. Winyard, A.M. Jones, The nitrate-nitrite-nitric oxide pathway: Its role in human exercise physiology. European Journal of Sport Science 12(4), 309–320 (2012), http://doi.org/10.1080/17461391.2011.635705

  • C. Torrentó, J. Cama, J. Urmeneta, N. Otero, A. Soler, Denitrification of groundwater with pyrite and thiobacillus denitrificans. Chem. Geol. 278(1), 80 – 91 (2010). ISSN 0009-2541, http://www.sciencedirect.com/science/article/pii/S0009254110003165

  • Y.-C. Zhang, H. Prommer, H.P. Broers, C.P. Slomp, J. Greskoviak, B. Van der Grift, P. Van Cappellen, Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer. Environ. sci. technol. 47(18), 10415–10422 (2013), http://pubs.acs.org/doi/abs/10.1021/es4023909

  • J. Bear, Y. Bachmat, Introduction to modeling of transport phenomena in porous media, vol. 4 (Springer, Berlin, 2012)

    Google Scholar 

  • D. L. Parkhurst , C. A. J. Appelo. User’s guide to phreeqc (version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Technical report, U.S. department of the interior u.s. geological survey, 1999, http://pubs.er.usgs.gov/publication/wri994259

  • M. A. Williamson, J. D. Rimstidt, The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica et Cosmochimica Acta, 58(24), 5443 – 5454 (1994). ISSN 0016-7037, http://www.sciencedirect.com/science/article/pii/0016703794902410

  • P. Eckert , C. A. J. Appelo. Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (btex) remediation with nitrate. Water Resour. Res. 38(8), 5–1–5–11 (2002). ISSN 1944-7973, http://dx.doi.org/10.1029/2001WR000692

  • I. Preiß. Anwendbarkeit einer screeningmethode zur bestimmung des nitratabbaupotenzials mittels redoxprofilmessungen in grundwassermessstellen im hessischen ried. Master’s thesis, Technische Universität Darmstadt. (2013)

    Google Scholar 

  • E. Knipp. Charakterisierung des nitratabbaupotenzials an bohrkernproben aus dem hessischen ried -methodenvalidierung zur lokalisierung regionaler abbauhorizonte. Master’s thesis, Technische Universität Darmstadt. (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunseon Jang .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jang, E. (2018). Application: Nitrate Reduction Processes. In: OpenGeoSys Tutorial. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-67153-6_6

Download citation