Abstract
The coupled reactive transport code (“OGS#IPhreeqc”) is applied to a pyrite-driven denitrification of nitrate-contaminated groundwater scenario. This nitrate reactive transport model is a simplification of the model involving both autotrophic and heterotrophic denitrification processes based on results from a field study in the Hessian Ried, Germany Kludt et al., (2016). For the interested reader, more detail information can be found in Jang et al., (2017).
Keywords
- Nitrate Reduction Process
- Heterotrophic Denitrification
- PHREEQC Input File
- Nite Traces
- Left Navigation Menu
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
References
C. Kludt, F.-A. Weber, A. Bergmann, K. Knöller, G. Berthold, C. Schüth. Identifizierung der nitratabbauprozesse und prognose des nitratabbaupotenzials in den sedimenten des hessischen rieds. Grundwasser, 21(3) 227–241 Sep 2016 ISSN 1432-1165, https://doi.org/10.1007/s00767-015-0317-5
E. Jang, W. He, H. Savoy, P. Dietrich, O. Kolditz, Y. Rubin, C. Schüth, T. Kalbacher, Identifying the influential aquifer heterogeneity factor on nitrate reduction processes by numerical simulation. Adv. in Water Resour. 99, 38–52 (2017), https://doi.org/10.1016/j.advwatres.2016.11.007
A. M. Fan , V. E. Steinberg, Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol. 23(1), 35 – 43 (1996). ISSN 0273-2300, http://dx.doi.org/10.1006/rtph.1996.0006
A. J. P. Smolders, E. C. H. E. T. Lucassen, R. Bobbink, J. G. M. Roelofs, L. P. M. Lamers, How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. B.geochem. 98(1) 1–7, Apr 2010. ISSN 1573-515X, https://doi.org/10.1007/s10533-009-9387-8
S. F. Korom, Natural denitrification in the saturated zone: A review. Water Resour. Res. 28(6), 1657–1668 (1992). ISSN 1944-7973, http://doi.org/10.1029/92WR00252
M. O. Rivett, S. R. Buss, P. Morgan, J. W. N. Smith, C. D. Bemment, Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 42(16), 4215 – 4232 (2008). ISSN 0043-1354, http://www.sciencedirect.com/science/article/pii/S0043135408002984
S.J. Bailey, A. Vanhatalo, P.G. Winyard, A.M. Jones, The nitrate-nitrite-nitric oxide pathway: Its role in human exercise physiology. European Journal of Sport Science 12(4), 309–320 (2012), http://doi.org/10.1080/17461391.2011.635705
C. Torrentó, J. Cama, J. Urmeneta, N. Otero, A. Soler, Denitrification of groundwater with pyrite and thiobacillus denitrificans. Chem. Geol. 278(1), 80 – 91 (2010). ISSN 0009-2541, http://www.sciencedirect.com/science/article/pii/S0009254110003165
Y.-C. Zhang, H. Prommer, H.P. Broers, C.P. Slomp, J. Greskoviak, B. Van der Grift, P. Van Cappellen, Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer. Environ. sci. technol. 47(18), 10415–10422 (2013), http://pubs.acs.org/doi/abs/10.1021/es4023909
J. Bear, Y. Bachmat, Introduction to modeling of transport phenomena in porous media, vol. 4 (Springer, Berlin, 2012)
D. L. Parkhurst , C. A. J. Appelo. User’s guide to phreeqc (version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Technical report, U.S. department of the interior u.s. geological survey, 1999, http://pubs.er.usgs.gov/publication/wri994259
M. A. Williamson, J. D. Rimstidt, The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica et Cosmochimica Acta, 58(24), 5443 – 5454 (1994). ISSN 0016-7037, http://www.sciencedirect.com/science/article/pii/0016703794902410
P. Eckert , C. A. J. Appelo. Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (btex) remediation with nitrate. Water Resour. Res. 38(8), 5–1–5–11 (2002). ISSN 1944-7973, http://dx.doi.org/10.1029/2001WR000692
I. Preiß. Anwendbarkeit einer screeningmethode zur bestimmung des nitratabbaupotenzials mittels redoxprofilmessungen in grundwassermessstellen im hessischen ried. Master’s thesis, Technische Universität Darmstadt. (2013)
E. Knipp. Charakterisierung des nitratabbaupotenzials an bohrkernproben aus dem hessischen ried -methodenvalidierung zur lokalisierung regionaler abbauhorizonte. Master’s thesis, Technische Universität Darmstadt. (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2018 The Author(s)
About this chapter
Cite this chapter
Jang, E. (2018). Application: Nitrate Reduction Processes. In: OpenGeoSys Tutorial. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-67153-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-67153-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67152-9
Online ISBN: 978-3-319-67153-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)