Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)


Reactive transport modeling is an important tool for the analysis of complex interactions between physically and hydro-bio-geo-chemically coupled processes in the subsurface. It is an effective method of assessing the relative importance and role of basic processes, which are otherwise treated as isolated, as it provides the opportunity to describe the interaction of competing processes on different spatial and temporal scales.


  1. D.J. Kirkner, H. Reeves, Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: Effect of the chemistry on the choice of numerical algorithm: 1. theory. Water Resour. Res. 24(10), 1719–1729 (1988). ISSN 1944-7973,
  2. P.C. Lichtner, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochimica et Cosmochimica Acta 49(3), 779–800 (1985). ISSN 0016-7037,
  3. M.H. Reed, Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochimica et Cosmochimica Acta 46(4), 513–528 (1982). ISSN 0016-7037,
  4. P. Aagaard, H.C. Helgeson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; i, theoretical considerations. Am. J. Sci. 282(3), 237–285 (1982),,
  5. A.C. Lasaga, Chemical kinetics of water-rock interactions. J. Geophys. Res.: Solid Earth 89(B6), 4009–4025 (1984). ISSN 2156-2202,
  6. K. Pruess, A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25 (1985). ISSN 01,
  7. G.T. Yeh, V.S. Tripathi, A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25(1), 93–108 (1989). ISSN 1944-7973,
  8. C.I. Steefel, C.A.J. Appelo, B. Arora, D. Jacques, T. Kalbacher, O. Kolditz, V. Lagneau, P.C. Lichtner, K.U. Mayer, J.C.L. Meeussen, S. Molins, D. Moulton, H. Shao, J. Simunek, N. Spycher, S.B. Yabusaki, G.T. Yeh, Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 19(3), 445–478 (2015). ISSN 1573-1499,
  9. A. Fiori, I. Jankovic, G. Dagan, The impact of local diffusion upon mass arrival of a passive solute in transport through three-dimensional highly heterogeneous aquifers. Adv. Water Resour. 34(12), 1563–1573 (2011). ISSN 0309-1708,
  10. L. Li, C.A. Peters, M.A. Celia, Effects of mineral spatial distribution on reaction rates in porous media. Water Resour. Res. 43(1) (2007). ISSN 1944-7973,
  11. P. Bayer, A. Comunian, D. Höyng, G. Mariethoz, High resolution multi-facies realizations of sedimentary reservoir and aquifer analogs. Sci. data 2 (2015),
  12. E. Jang, W. He, H. Savoy, P. Dietrich, O. Kolditz, Y. Rubin, C. Schüth, T. Kalbacher, Identifying the influential aquifer heterogeneity factor on nitrate reduction processes by numerical simulation. Adv. Water Resour. 99, 38–52 (2017),
  13. H. Savoy, T. Kalbacher, P. Dietrich, Y. Rubin, Geological heterogeneity: Goal-oriented simplification of structure and characterization needs. Adv. Water Resour., in pressGoogle Scholar
  14. Umweltbundesamt. Reaktiver stickstoff in deutschland - ursachen, wirkungen, maSSnahmen (eds geupel, m., frommer j.). umweltbundesamt. Technical report, Umweltbundesamt, Dessau-RoSSlau, Germany, 2014Google Scholar
  15. A. Bergmann, F.-A. Weber, C. Hansen, S. Wilde, L. van Straaten, W. van Berk, S. HäuSSler, P. Dietrich, U. Franko, J. Kiefer, M. Rödelsperger, Konsequenzen nachlassenden nitratabbaus in grundwasserleitern. Energie-, Wasser-Praxis 62(2), 36–42 (2014)Google Scholar
  16. C. Hansen, A. Bergmann, F.-A. Weber, L. van Straaten, S. Wilde, W. van Berk, S. HäuSSler, M. Rödelsperger, P. Dietrich, U. Franko, Konsequenzen nachlassenden nitratabbaus in grundwasserleitern. Energie-, Wasser-Praxis 59(10), 44–49 (2011)Google Scholar
  17. W. He, C. Beyer, J.H. Fleckenstein, E. Jang, O. Kolditz, N. Dmitri, T. Kalbacher, A parallelization scheme to simulate reactive transport in the subsurface environment with ogs#iphreeqc 5.5.7-3.1.2. Geosci. Model Dev. 8(10), 3333–3348 (2015),
  18. T. Kalbacher, J.O. Delfs, H. Shao, W. Wang, M. Walther, L. Samaniego, C. Schneider, R. Kumar, A. Musolff, F. Centler, F. Sun, A. Hildebrandt, R. Liedl, D. Borchardt, P. Krebs, The iwas-toolbox: Software coupling for an integrated water resources management. Environ. Earth Sci. 65(5), 1367–1380 (2012). ISSN 1866-6299,
  19. O. Kolditz, S. Bauer, L. Bilke, N. Böttcher, J.O. Delfs, T. Fischer, U.J. Görke, T. Kalbacher, G. Kosakowski, C.I. McDermott, C.H. Park, F. Radu, K. Rink, H. Shao, H.B. Shao, F. Sun, Y.Y. Sun, A.K. Singh, J. Taron, M. Walther, W. Wang, N. Watanabe, Y. Wu, M. Xie, W. Xu, B. Zehner, OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (thm/c) processes in porous media. Environ. Earth Sci. 67, 589–599 (2012),
  20. S.R. Charlton, D.L. Parkhurst, Modules based on the geochemical model phreeqc for use in scripting and programming languages. Comput. Geosci 37(10), 1653–1663 (2011). ISSN 0098-3004,
  21. D.L. Parkhurst, C.A.J. Appelo. Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods (2013),

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Environmental InformaticsHelmholtz Centre for Environmental Research UFZLeipzigGermany

Personalised recommendations