Skip to main content

Data Quality in Rare Diseases Registries

  • Chapter
  • First Online:
Rare Diseases Epidemiology: Update and Overview

Abstract

In the field of rare diseases, registries are considered power tool to develop clinical research, to facilitate the planning of appropriate clinical trials, to improve patient care and healthcare planning. Therefore high quality data of rare diseases registries is considered to be one of the most important element in the establishment and maintenance of a registry. Data quality can be defined as the totality of features and characteristics of data set that bear on its ability to satisfy the needs that result from the intended use of the data. In the context of registries, the ‘product’ is data, and quality refers to data quality, meaning that the data coming into the registry have been validated, and ready for use for analysis and research. Determining the quality of data is possible through data assessment against a number of dimensions: completeness, validity; coherence and comparability; accessibility; usefulness; timeliness; prevention of duplicate records. Many others factors may influence the quality of a registry: development of standardized Case Report Form and security/safety controls of informatics infrastructure. With the growing number of rare diseases registries being established, there is a need to develop a quality validation process to evaluate the quality of each registry. A clear description of the registry is the first step when assessing data quality or the registry evaluation system. Here we report a template as a guide for helping registry owners to describe their registry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Arts DGT, de Keizer NF, Scheffer G-J (2002) Defining and improving data quality in medical registries: a literature review, case study, and generic framework. JAMIA 9(6):600–611

    PubMed  PubMed Central  Google Scholar 

  2. Bergen JC, Rodrigues M, Roxburgh R, Lusakowska A, Kostera-Pruszczyk A, Zimowski J, Santos R, Neagu E, Artemieva S, RasicVM VD, Posada M, Bloetzer C, JeannetPY JF, Díaz-Manera J, Gallardo E, Karaduman AA, Topaloğlu H, El Sherif R, Stringer A, Shatillo AV, Martin AS, Peay HL, Bellgard MI, Kirschner J, Flanigan KM, Straub V, Bushby K, Verschuuren J, Aartsma-Rus A, Béroud C, Lochmüller H (2015) The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 36(4):395–402. https://doi.org/10.1002/humu.22758

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bray F, Parkin DM (2009) Evaluation of data quality in the cancer registry: principles and methods Part I: comparability, validity and timeliness. Eur J Cancer 45(5):747–755

    Article  PubMed  Google Scholar 

  4. Brooke EM (1974) The current and future use of registries in health information systems. World Health Organization, Geneva

    Google Scholar 

  5. Chao A, TsayPK LSH, Shan WV, Chao DY (2001) The applications of capture-recapture models to epidemiological data. Stat Med 20(20):3123–3157

    Article  CAS  PubMed  Google Scholar 

  6. Coi A, Santoro M, Villaverde-Hueso A, Lipucci Di Paola M, Gainotti S, Taruscio D, Posada de la Paz M, Bianchi F (2016) The quality of rare disease registries: evaluation and characterization. Public Health Genomics 19(2):108–115

    Article  PubMed  Google Scholar 

  7. Couchoud C, Lassalle M, Cornet R, Jager KJ (2013) Renal replacement therapy registries—time for a structured data quality evaluation programme. Nephrol Dial Transplant 28:2215–2220

    Article  PubMed  Google Scholar 

  8. European Centre for Disease Prevention and Control (2014) Data quality monitoring and surveillance system evaluation – A handbook of methods and applications. ECDC, Stockholm; 2014. http://ecdc.europa.eu/en/publications/Publications/Data-quality-monitoring-surveillance-system-evaluation-Sept-2014.pdf. Accessed 25 July 2016

  9. Eurostat (2003) Assessment of quality in statistics. Definition of quality in statistics. Working group, Luxembourg

    Google Scholar 

  10. Gaddale JR (2015) Clinical data acquisition standards harmonization importance and benefits in clinical data management. Perspect Clin Res 6(4):179–183

    Article  PubMed  PubMed Central  Google Scholar 

  11. Glass S, Gray M, Eden OB, Hann I (1987) Scottish validation study of cancer registration data childhood leukemia 1968–1981-I. Leuk Res 11(10):881–885

    Article  CAS  PubMed  Google Scholar 

  12. Helesson O et al (1994) Malignant disease observed in a cohort of women. A validation of Swedish cancer registry data. Scand J Soc Med 22(1):46–49

    Article  Google Scholar 

  13. Hofferkamp JE (2010) Standards for completeness, quality, analysis, management, security and confidentiality of data. Standards for Cancer Registries Volume III. North American Association of Central Cancer Registries, Springfield (IL)

    Google Scholar 

  14. Hollander JE, Singer AJ, Valentine S, Henry MC (1995) Wound registry: development and validation. Ann Emerg Med 25(5):675–685

    Article  CAS  PubMed  Google Scholar 

  15. ISO 8402:1994. Quality management and quality assurance vocabulary, withdrawn and revised by ISO 9000:2000 quality management systems – fundamentals and vocabulary. March 2004

    Google Scholar 

  16. Kristensen J, Langhoff-Roos J, Skovgaard LT, Kristensen FB (1996) Validation of the Danish birth registration. J ClinEpidemiol 49(8):893–897

    CAS  Google Scholar 

  17. Lindoerfer D, Mansmann U (2015) A comprehensive assessment tool for patient registry software systems: the CIPROS checklist. Methods Inf Med 54(5):447–454. https://doi.org/10.3414/ME14-02-0026

    Article  CAS  PubMed  Google Scholar 

  18. Lindoerfer D, Mansmann U (2014) CIPROS--a checklist with items for a patient registry software system. Stud Health Technol Inform 205:161–165

    PubMed  Google Scholar 

  19. Liu FX, Rutherford P, Smoyer-Tomic K, Prichard S, Laplante S (2015) A global overview of renal registries: a systematic review. BMC Nephrol 16:31. https://doi.org/10.1186/s12882-015-0028-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maaroufi M, Choquet R, Landais P, Jaulent MC (2015) Towards data integration automation for the French rare disease registry. AMIA Annu Symp Proc 2015:880–885

    PubMed  PubMed Central  Google Scholar 

  21. Organisation for Economic Co-operation and Development (OECD) (2002) Quality framework for OECD statistics Paris

    Google Scholar 

  22. Parkin DM, Bray F (2009) Evaluation of data quality in the cancer registry: principles and methods Part II. Completeness. Eur J Cancer 45:756–764

    Article  PubMed  Google Scholar 

  23. Robertsson O, Dunbar M, Knutson K, Lewold S, Lidgren L (1999) Validation of the Swedish Knee Arthroplasty Register: a postal survey regarding 30, 376 knees operated on between 1975 and 1995. Acta Orthop Scand 70(5):467–472

    Article  CAS  PubMed  Google Scholar 

  24. Rothman KJ, Greenland S (eds) (1998) Modern Epidemiology, 2nd edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  25. Sabino G, Mills A, Jonker AH, Lau LPL, Aartsma-Rus A, Aarum S, Arora J, Calvert M, Cano SJ, Denegri S, Hass S, Kelley TA, Klassen AF, Kodra Y, Légout V, Hivert V, Morel T, Payne K, Posada M, Prainsack B, Moy CS, Schmitt J, Summar M, Terry SF, Terwee CB, Vernon M, Williamson PR, Aymé S (eds) (2016) Patient-centered outcome measures in the field of rare diseases, February 2016

    Google Scholar 

  26. Santoro M, Coi A, Lipucci Di Paola M, Bianucci AM, Gainotti S, Mollo E, Taruscio D, Vittozzi L, Bianchi F (2015) Rare disease registries classification and characterization: a data mining approach. Public Health Genomics 18(2):113–122

    Article  PubMed  Google Scholar 

  27. Schrijvers CT, al e (1994) Validation of cancer prevalence data from a postal survey by comparison with cancer registry records. Am J Epidemiol 139(4):408–414

    Article  CAS  PubMed  Google Scholar 

  28. Seddon DJ, Williams EM (1997) Data quality in population-based cancer registration: an assessment of the Merseyside and Cheshire cancer registry. Br J Cancer 76(5):667–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sekikawa A, Eguchi H, Tominaga M, Manaka H, Sasaki H, Chang YF, Kato T (1999) Evaluating the reported prevalence of type-2 Diabetes Mellitus by the Oguni Diabetes Registry using a two-sample method of capture-recapture. Int J Epidemiol 28(3):498–501

    Article  CAS  PubMed  Google Scholar 

  30. Bellary S, Krishnankutty B, Latha MS (2014) Basics of case report form designing in clinical research. Perspect Clin Res 5(4):159–166. https://doi.org/10.4103/2229-3485.140555

    Article  PubMed  PubMed Central  Google Scholar 

  31. Skeet RG (1991) Cancer registration: principles and methods. Quality and quality control. IARC Sci Publ 95:101–107

    Google Scholar 

  32. Stone DH (1986) A method for validation of data in a register. Public Health 100(5):316–324

    Article  CAS  PubMed  Google Scholar 

  33. Taruscio D, Kodra Y, Ferrari G, Vittozzi L (2014) National Rare Diseases Registry Collaborating Group.. The Italian National rare diseases registry. Blood Transfus 12(4):s606–s613. https://doi.org/10.2450/2014.0064-14s

    PubMed  PubMed Central  Google Scholar 

  34. Taruscio D, Vittozzi L, Choquet R, Heimdal K, Iskrov G, Kodra Y, LandaisP PM, Stefanov R, Steinmueller C, Swinnen E, Van Oyen H (2015) National registries of rare diseases in Europe: an overview of the current situation and experiences. Public Health Genomics 18(1):20–25. https://doi.org/10.1159/000365897

    Article  PubMed  Google Scholar 

  35. Topp M, Langhoff-Roos J, Uldall P (1997) Validation of a cerebral palsy register. J Clin Epidemiol 50(9):1017–1023

    Article  CAS  PubMed  Google Scholar 

  36. United States Bureau of the Census (1998) Survey design and statistical methodology metadata, software and standards management branch, systems support division. Washington DC; Section 3.3.6, p 8

    Google Scholar 

  37. Wang RY, Strong DM (1996) Beyond accuracy: what data quality means to data consumers. JMIS 12(4):5–33

    Google Scholar 

  38. Zaletel M, Krolj M (eds) (2015) Methodological guidelines and recommendations for efficient and rational governance of patient registries. National Institute of Public Health, Ljubljana. http://patientregistries.eu/guidelines. Accessed 25 July 2016

  39. Zoni AC, Domínguez Berjón MF, Barceló E, Esteban Vasallo MD, Abaitua I, Jiménez Villa J, Margolles Martins M, Navarro C, Posada M, Ramos Aceitero JM, Vázquez Santos C, Zurriaga Llorens O, Astray Mochales J (2015) Spain-RDR Group. Identifying data sources for a national population-based registry: the experience of the Spanish Rare Diseases Registry. Public Health 129(3):271–275. https://doi.org/10.1016/j.puhe.2014.12.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yllka Kodra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kodra, Y. et al. (2017). Data Quality in Rare Diseases Registries. In: Posada de la Paz, M., Taruscio, D., Groft, S. (eds) Rare Diseases Epidemiology: Update and Overview. Advances in Experimental Medicine and Biology, vol 1031. Springer, Cham. https://doi.org/10.1007/978-3-319-67144-4_8

Download citation

Publish with us

Policies and ethics