Taxane Formulations: From Plant to Clinic

  • A. ElhissiEmail author
  • R. Mahmood
  • I. Parveen
  • A. Vali
  • W. Ahmed
  • M. J. Jackson


Taxanes including paclitaxel and docetaxel are highly active against many types of cancers. The main obstacle with developing delivery systems of taxanes is their poor water solubility. In this chapter, taxanes were reviewed in terms of their pharmacology, solubility and stability using traditional formulations such as those based on using Cremophor EL and novel nanocarrier-based formulations including liposome, nanoparticle and polymeric micelle delivery systems. Commercially available formulations of paclitaxel such as Taxol, Abraxane and Genexol-PM were highlighted.


  1. 1.
    Zhang A, Anyarambhatla L, Ma G, Ugwu L, Xuan S, Sardone T, Ahmed T, I. (2004) Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm 59:177–187CrossRefGoogle Scholar
  2. 2.
    Vaishampayan U, Parchment ER, Bhaskara JR, Maha H (1999) Taxanes: an overview of the pharmacokinetics and pharmacodynamics. Urology 54(6):122–129CrossRefGoogle Scholar
  3. 3.
    Thiesen J, Krämer I (1999) Physico-chemical stability of docetaxel premix solution and docetaxel infusion solutions in PVC bags and polyolefine containers. Pharm World Sci 21(3):137–141CrossRefGoogle Scholar
  4. 4.
    Verweij J, Clavel M, Chevalier B (1994) Paclitaxel and docetaxel: not simply two of a kind. Ann Oncol 5:495–505CrossRefGoogle Scholar
  5. 5.
    Jordan AM, Toso JR, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 90:9552–9556CrossRefGoogle Scholar
  6. 6.
    DeVita VT, Lawrence TS, Rosenberg SA, Weinberg RA, DePinho RA (2008) DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology, vol 1. Lippincott Williams and Wilkins, Philadelphia, pp 447–450Google Scholar
  7. 7.
    Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667CrossRefGoogle Scholar
  8. 8.
    Rowinsky EK, Cazenave LA, Donehover RC (1990) Taxol: a novel investigational microtubule agent. J. Natl. Cancer Inst. 82:1247–1259CrossRefGoogle Scholar
  9. 9.
    Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235:179–192CrossRefGoogle Scholar
  10. 10.
    O’Connell CB, Khodjakov AL (2007) Cooperative mechanisms of mitotic spindle formation. J Cell Sci 120:1717–1722CrossRefGoogle Scholar
  11. 11.
    Crown J, O’Leary M (2000) Taxanes an update. Lancet 355:1176–1178CrossRefGoogle Scholar
  12. 12.
    Kaye S, Piccart JM, Gore M, Huinink BTW, Oosterom VA, Verweij J, Wanders J, Franklin H, Bayssas M (1995) Docetaxel: an active new drug for treatment of advanced epithelial ovarian cancer. J Natl Cancer Inst 87(9):676–681CrossRefGoogle Scholar
  13. 13.
    Engblom P, Pulkkinen OJ, Rantanen V, Hirvonen H, Kulmala J, Grènman R, Grènman S (1999) Effects of paclitaxel with or without cremophor EL on cellular clonogenic survival and apoptosis. Eur J Cancer 35(2):284–288CrossRefGoogle Scholar
  14. 14.
    Nuijen B, Bouma M, Schellens JHM, Beijnen JH (2001) Progress in the development of alternative pharmaceutical formulations of taxanes. Invest New Drugs 19(2):143–153CrossRefGoogle Scholar
  15. 15.
    Immordino ML, Brusa P, Arpicco S, Stella B, Dosio F, Cattel L (2003) Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J Control Release 91:417–429CrossRefGoogle Scholar
  16. 16.
    Engels FK, Mathot RAA, Verweij J (2007) Alternative drug formulations of docetaxel: a review. Anticancer Drugs 18:95–103CrossRefGoogle Scholar
  17. 17.
    Kattige A (2006) Long-term physical and chemical stability of a generic paclitaxel infusion under simulated storage and clinical-use conditions. Eur J Hosp Pharm Sci 12(6):129–134Google Scholar
  18. 18.
    Eroles AA, Bafalluy IM, Arnaiz JAS (2009) Stability of docetaxel diluted to 0.3 or 0.9 mg/mL with 0.9% sodium chloride injection and stored in polyolefin or glass containers. Am J Health Syst Pharm 66(17):1565–1568CrossRefGoogle Scholar
  19. 19.
    Donyai P, Sewell GJ (2006) Physical and chemical stability of paclitaxel infusions in different container types. J Oncol Pharm Pract 12(4):211–222CrossRefGoogle Scholar
  20. 20.
    Pourro B, Botta C, Solas C, Lacarelle B, Braguer D (2005) Seventy-two-hour stability of Taxol® in 5% dextrose or 0·9% sodium chloride in Viaflo®, Freeflex®, Ecoflac® and Macoflex N® non-PVC bags. J Clin Pharm Ther 30(5):455–458CrossRefGoogle Scholar
  21. 21.
    Trissel LA, Xu QA, Gilbert DL (1998) Compatibility and stability of paclitaxel combined with doxorubicin hydrochloride in infusion solutions. Ann Parmacother 32(10):1013–1016CrossRefGoogle Scholar
  22. 22.
    Dordunoo SK, Burt HM (1996) Solubility and stability of taxol: effects of buffers and cyclodextrins. Int J Pharm 133(1–2):191–201CrossRefGoogle Scholar
  23. 23.
    Waugh WN, Trissel LA, Stella VJ (1991) Stability, compatibility, and plasticizer extraction of taxol (NSC-125973) injection diluted in infusion solutions and stored in various containers. Am J Hosp Pharm 48(7):1520–1524Google Scholar
  24. 24.
    Murphy SR, Wadey BL (1988) DEHP and toxicity. J Vinyl Technol 10(3):121–124CrossRefGoogle Scholar
  25. 25.
    Dorr RT (1994) Pharmacology and toxicology of Cremophor EL diluent. Ann Pharmacother 28:511–514CrossRefGoogle Scholar
  26. 26.
    Lilley LL, Scott HB (1993) What you need to know about taxol? Am. J. Nurs. 93:46–50Google Scholar
  27. 27.
    Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598CrossRefGoogle Scholar
  28. 28.
    Lam YW, Chan CY, Kuhn JG (1997) Pharmacokinetics and pharmacodynamics of the taxanes. J. Oncol. Pharm. Pract 3:76–93CrossRefGoogle Scholar
  29. 29.
    Yang T, Choi MK, Chung SJ, Shim CK, Kim CC (2007) Liposome formulation of paclitaxel with enhanced solubility and stability. Drug Deliv 5:3Google Scholar
  30. 30.
    Sharma A, Mayhew E, Bolcsak L, Cavanaugh C, Harmon P, Janoff A, Bernacki RJ (1997) Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int. J. Cancer 71:103–107CrossRefGoogle Scholar
  31. 31.
    Fetterly GJ, Straubinger RM (2003) Pharmacokinetics of paclitaxel-containing liposomes in rats. Am Assoc Pharm Sci 5(4):90–100Google Scholar
  32. 32.
    Kunstfeld R, Wickenhauser G, Michaelis U, Teifel M, Umek W, Naujoks K, Wolff K, Petzelbauer P (2003) Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J Invest Dermat 120:476–482CrossRefGoogle Scholar
  33. 33.
    Koudelka S, Turánek J (2012) Liposomal paclitaxel formulations. J Control Release 163:322–334CrossRefGoogle Scholar
  34. 34.
    Wang H, Cheng G, Du Y, Ye L, Chen W, Zhang L, Wang T, Tian J, Fu F (2013) Hypersensitivity reaction studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation. Mol Med Rep 7:947–952CrossRefGoogle Scholar
  35. 35.
    Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA (2017) Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm 526:474–495CrossRefGoogle Scholar
  36. 36.
    Najlah M, Jain M, Wan KW, Ahmed W, Albed Alhnan M, Phoenix DA, Taylor KM, Elhissi A (2016) Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells. J Liposome Res:1–12.
  37. 37.
    Musumeci T, Vicari L, Ventura CA, Gulisano M, Pignatello R, Puglisi G (2006) Lyoprotected nanosphere formulations for paclitaxel controlled delivery. J Nanosci Nanotechnol 6:1–8CrossRefGoogle Scholar
  38. 38.
    Ahmad N, Alam MA, Ahmad R, Naqvi AA, Ahmad FJ (2017) Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. Artif Cells Nanomed Biotechnol 1-14. doi:
  39. 39.
    Fonseca C, Simo’es S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83:273–286CrossRefGoogle Scholar
  40. 40.
    Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y, Yan Z, Li Y (2005) In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 288:361–368CrossRefGoogle Scholar
  41. 41.
    Zhigaltsev IV, Winters G, Srinivasulu M, Crawford J, Wong M, Amankwa L, Waterhouse D, Masin D, Webb M, Harasym N, Heller L, Bally MB, Ciufolini MA, Cullis PR, Maurer N (2010) Developement of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. J Control Release 144:332–340CrossRefGoogle Scholar
  42. 42.
    Desai N, Yao Z, Soon-Shiong P, Dykes D (2002) Evidence of enhanced in vivo efficacy at maximum tolerated dose (MTD) of nanoparticle paclitaxel (ABI-007) and taxol in 5 human tumor xenografts of varying sensitivity to paclitaxel. Am Soc Clin Oncol 21:462Google Scholar
  43. 43.
    Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Richard L, Rivera ET, Esmaeli B, Ring ES, Bedikian A, Hortobagyi NG, Ellerhorst AJ (2002) Phase I and pharmacokinetic study of ABI-007, a cremophor-free protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8:1038–1044Google Scholar
  44. 44.
    Ibrahim NK, Samuels B, Page R, Doval D, Patel MK, Rao CS, Nair KM, Bhar P, Desai N, Hortobagyi GN (2005) Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J Clin Oncol 23(25):6019–6026CrossRefGoogle Scholar
  45. 45.
    O’Shaughnessy J, Tjulandin S, Davidson N, Shaw H, Desai N, Hawkins MJ (2003) ABI-007 (ABRAXANE™), a nanoparticle albumin-bound (nab) paclitaxel demonstrates superior efficacy vs taxol in MBC: a phase III trial. Proceedings from the 26th annual San Antonio Breast Cancer Symposium, San Antonio, Texas, USAGoogle Scholar
  46. 46.
    Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, Hawkins MJ (2006) Abraxane, a novel cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 17:1263–1268CrossRefGoogle Scholar
  47. 47.
    Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803CrossRefGoogle Scholar
  48. 48.
    Garber K (2004) Improved paclitaxel formulation—hints at new chemotherapy approach. J Natl Cancer Inst 96:90–91CrossRefGoogle Scholar
  49. 49.
    Blair HA, Deeks ED (2015) Albumin-bound paclitaxel: a review in non-small cell lung cancer. Drugs 75:2017–2024CrossRefGoogle Scholar
  50. 50.
    Kim T-Y, Kim D-W, Chung J-Y, Shin SG, Kim S-C, Heo SD, Kim KN, Bang Y-J (2004) Phase I and pharmacokinetic study of genexol-pm, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716CrossRefGoogle Scholar
  51. 51.
    Lee SW, Kim YM, Cho CH, Kim YT, Kim SM, Hur SY, Kim JH, Kim BG, Kim SC, Ryu HS, Kang SB (2017) An open-label, randomized, parallel, phase II trial to evaluate the efficacy and safety of a cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: a Korean Gynecologic Oncology Group study (KGOG-3021). Cancer Res Treat. In Press Cancer Res Treat. doi:  10.4143/crt.2016.376
  52. 52.
    Kim D-W, Kim S-Y, Kim H-K, Kim S-W, Shin S-W, Kim SJ, Park K, Lee YM, Heo SD (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. European Society for Medical Oncology 18:2009–2014CrossRefGoogle Scholar
  53. 53.
    Najlah M, D’Emanuele A (2006) Crossing cellular barriers using dendrimer nanotechnologies. Curr Opin Pharmacol 6:522–527CrossRefGoogle Scholar
  54. 54.
    Ooya T, Lee J, Park K (2003) Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release 93:121–127CrossRefGoogle Scholar
  55. 55.
    Kan P, Chen ZB, Lee CJ, Chu IM (1999) Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J Control Release 58:271–278CrossRefGoogle Scholar
  56. 56.
    Najlah M, Kadam A, Wan KW, Ahmed W, Taylor KM, Elhissi AM (2016) Novel paclitaxel formulations solubilized by parenteral nutrition nanoemulsions for application against glioma cell lines. Int J Pharm 506:102–109CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. Elhissi
    • 1
    Email author
  • R. Mahmood
    • 2
  • I. Parveen
    • 2
  • A. Vali
    • 2
  • W. Ahmed
    • 3
  • M. J. Jackson
    • 4
  1. 1.College of PharmacyQatar UniversityDohaQatar
  2. 2.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
  3. 3.School of Mathematics and PhysicsUniversity of LincolnLincolnUK
  4. 4.School of Interdisciplinary StudiesKansas State UniversityManhattanUSA

Personalised recommendations