Synthesis and Characterisation of Magnetic Nanoparticles in Medicine



The idea of using magnetic nanomaterials in biomedical applications has been studied since last decades. Magnetic nanomaterials have been found as a promising candidate in biological applications. This chapter presented the diverse approach to engineer the nanoparticles for targeted applications. Superparamagnetic iron oxide nanoparticle (SPION) cores of 10–25 nm were synthesised using co-precipitation method iron (II) and iron (III) salts in alkaline medium. The superparamagnetic behaviour is an ideal solid support for the hyperthermia ablation and magnetic field-triggered stimuli for drug release. These cores were further coated with mesoporous silica rendering them versatile materials, which can enhance the stability, drug-loading capacity and its release in controllable manner. Moreover, their promising applications as magnetic field-triggered hyperthermia ablation and magnetic field-triggered controlled-release drug delivery combining both thermos-chemotherapy system.

These materials were characterised using a variety of techniques such as Zetasizer, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM) and magnetic field-induced hyperthermia. The diameter of spherical superparamagnetic iron oxide nanoparticles was measured to be from 10 to 255 nm. Crystalline magnetite (Fe3O4) structures were confirmed by powder XRD. These magnetite nanocrystals were further modified with a biocompatible silica shell. Brunauer-Emmett-Teller (BET) analysis revealed a mesoporous shell structure. VSM of core-shell composite materials depicted superparamagnetic nature; hence, these materials have the ability to heat over the exposure to an applied external magnetic field for hyperthermia ablation.

Anticancer drug (doxorubicin, DOX) loading and release profile of bare spherical and silica-coated spheres were studied for potential therapeutic application. Exposure to AC magnetic field (200 G, 406 kHz), the SPION materials generated hyperthermia in a time-dependent manner reaching 50 °C in 3 min. Magnetic field-triggered drug release was seen only in spherical core-shell nanocomposites with 6X higher compared at 37 °C without exposure.


  1. 1.
    Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160CrossRefGoogle Scholar
  2. 2.
    Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46CrossRefGoogle Scholar
  3. 3.
    Sen T, Bruce IJ (2009) Mesoporous silica–magnetite Nanocomposites: fabrication, characterisation and applications in biosciences. Microporous Mesoporous Mater 120(3):246–251CrossRefGoogle Scholar
  4. 4.
    Sen T, Sheppard SJ, Mercer T, Eizadi-sharifabad M, Mahmoudi M, Elhissi A (2012) Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery. RSC Adv 2(12):5221CrossRefGoogle Scholar
  5. 5.
    Kirschvink JL, Kobayashi-Kirschvink A, Diaz-Ricci JC, Kirschvink SJ (1992) Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics 13(S1):101–113CrossRefGoogle Scholar
  6. 6.
    Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt H-G (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754CrossRefGoogle Scholar
  7. 7.
    Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336(1):8–17CrossRefGoogle Scholar
  8. 8.
    Maity D, Kale SN, Kaul-Ghanekar R, Xue J-M, Ding J (2009) Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri (ethylene glycol). J Magn Magn Mater 321(19):3093–3098CrossRefGoogle Scholar
  9. 9.
    Amara D, Felner I, Nowik I, Margel S (2009) Synthesis and characterization of Fe and Fe 3 O 4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloids Surf A Physicochem Eng Asp 339(1):106–110CrossRefGoogle Scholar
  10. 10.
    Laurent S, Henoumont C, Stanicki D, Boutry S, Lipani E, Belaid S, Muller RN, Vander Elst L (2017) Superparamagnetic iron oxide nanoparticles. In: MRI contrast agents. Springer, Singapore, pp 55–109CrossRefGoogle Scholar
  11. 11.
    Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5(5):1722–1731CrossRefGoogle Scholar
  12. 12.
    Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091CrossRefGoogle Scholar
  13. 13.
    Nordmeyer D, Stumpf P, Gröger D, Hofmann A, Enders S, Riese SB, Dernedde J, Taupitz M, Rauch U, Haag R (2014) Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents. Nanoscale 6(16):9646–9654CrossRefGoogle Scholar
  14. 14.
    Rajabi F, Kakeshpour T, Saidi MR (2013) Supported iron oxide nanoparticles: recoverable and efficient catalyst for oxidative SS coupling of Thiols to disulfides. Catal Commun 40:13–17CrossRefGoogle Scholar
  15. 15.
    Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H (2014) Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci Rep 4:5020CrossRefGoogle Scholar
  16. 16.
    Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39(6):1877CrossRefGoogle Scholar
  17. 17.
    Sharifabad ME, Hodgson B, Jellite M, Mercer T, Sen T (2014) Enzyme immobilised novel core-shell superparamagnetic nanocomposites for enantioselective formation of 4-(R)-hydroxycyclopent-2-en-1-(S)-acetate. Chem Commun 50(76):11185–11187CrossRefGoogle Scholar
  18. 18.
    Sen T, Sebastianelli A, Bruce IJ (2006) Mesoporous silica−magnetite nanocomposite: fabrication and applications in magnetic bioseparations. J Am Chem Soc 128(22):7130–7131CrossRefGoogle Scholar
  19. 19.
    Holzwarth U, Gibson N (2011) The Scherrer equation versus the’Debye-Scherrer equation. Nat Nanotechnol 6(9):534CrossRefGoogle Scholar
  20. 20.
    Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2(03):154CrossRefGoogle Scholar
  21. 21.
    Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117(1):75–90CrossRefGoogle Scholar
  22. 22.
    El Mendili Y, Bardeau J-F, Randrianantoandro N, Greneche J-M, Grasset F (2016) Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3. Sci Technol Adv Mater 17(1):597–609CrossRefGoogle Scholar
  23. 23.
    Simeonidis K, Martinez-Boubeta C, Balcells L, Monty C, Stavropoulos G, Mitrakas M, Matsakidou A, Vourlias G, Angelakeris M (2013) Fe-based nanoparticles as tunable magnetic particle hyperthermia agents. J Appl Phys 114(10):103904CrossRefGoogle Scholar
  24. 24.
    Jiles D (2015) Introduction to magnetism and magnetic materials. CRC PressGoogle Scholar
  25. 25.
    Harris LA (2002) Polymer stabilized magnetite nanoparticles and poly (propylene oxide) modified styrene-dimethacrylate networks.Google Scholar
  26. 26.
    Brown WF Jr (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130(5):1677CrossRefGoogle Scholar
  27. 27.
    Graczyk H, Bryan LC, Lewinski N, Suarez G, Coullerez G, Bowen P, Riediker M (2015) Physicochemical characterization of nebulized superparamagnetic iron oxide nanoparticles (SPIONs). J Aerosol Med Pulm Drug Deliv 28(1):43–51CrossRefGoogle Scholar
  28. 28.
    Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285CrossRefGoogle Scholar
  29. 29.
    Karimzadeh I, Aghazadeh M, Ganjali MR, Norouzi P, Shirvani-Arani S, Doroudi T, Kolivand PH, Marashi SA, Gharailou D (2016) A novel method for preparation of bare and poly (vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater Lett 179:5–8CrossRefGoogle Scholar
  30. 30.
    Kandasamy G, Surendran S, Chakrabarty A, Kale SN, Maity D (2016) Facile synthesis of novel hydrophilic and carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles for biomedical applications. RSC Adv 6(102):99948–99959CrossRefGoogle Scholar
  31. 31.
    Feng B, Hong RY, Wang L, Guo L, Li HZ, Ding J, Zheng Y, Wei DG (2008) Synthesis of Fe 3 O 4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A Physicochem Eng Asp 328(1):52–59CrossRefGoogle Scholar
  32. 32.
    Banaei A, Vojoudi H, Karimi S, Bahar S, Pourbasheer E (2015) Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag(i) from aqueous samples. RSC Adv 5(101):83304–83313CrossRefGoogle Scholar
  33. 33.
    Greene D, Serrano-Garcia R, Govan J, Gun’ko YK (2014) Synthesis characterization and photocatalytic studies of cobalt ferrite-silica-titania nanocomposites. Nanomaterials 4(2):331–343CrossRefGoogle Scholar
  34. 34.
    Qu L, Tie S (2009) Mesoporous silica-coated superparamagnetic magnetite functionalized with CuO and its application as a desulfurizer. Microporous Mesoporous Mater 117(1):402–405CrossRefGoogle Scholar
  35. 35.
    Chatterjee J, Haik Y, Chen C-J (2003) Size dependent magnetic properties of iron oxide nanoparticles. J Magn Magn Mater 257(1):113–118CrossRefGoogle Scholar
  36. 36.
    Maaz K, Duan JL, Karim S, Chen YH, Zhai PF, Xu LJ, Yao HJ, Liu J (2016) Fabrication and size dependent magnetic studies of Ni X Mn 1− X Fe 2 O 4 (X= 0.2) cubic nanoplates. J Alloys Compd 684:656–662CrossRefGoogle Scholar
  37. 37.
    Knežević NŽ, Lin VS-Y (2013) A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale 5(4):1544–1551CrossRefGoogle Scholar
  38. 38.
    Wang YD, Zhang S, Ma CL, Li HD (2007) Synthesis and room temperature photoluminescence of ZnO/CTAB ordered layered nanocomposite with flake-like architecture. JOL 126(2):661–664Google Scholar
  39. 39.
    Bordbar AK, Rastegari AA, Amiri R, Ranjbakhsh E, Abbasi M, Khosropour AR (2014) Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol Res Int 2014:705068CrossRefGoogle Scholar
  40. 40.
    Nikam DS, Jadhav SV, Khot VM, Phadatare MR, Pawar SH (2014) Study of AC magnetic heating characteristics of co 0.5 Zn 0.5 Fe 2 O 4 nanoparticles for magnetic hyperthermia therapy. J Magn Magn Mater 349:208–213CrossRefGoogle Scholar
  41. 41.
    Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK (2014) Enhanced specific absorption rate in silanol functionalized Fe 3 O 4 CORE–shell nanoparticles: study of Fe leaching in Fe 3 O 4 and hyperthermia in L929 and HeLa cells. Colloids Surf B Biointerfaces 122:396–403CrossRefGoogle Scholar
  42. 42.
    Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S, Beck M, Nadobny J, Budach V, Wust P (2015) Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials. Gov registry. Int J Hyperthermia 31(6):609–614CrossRefGoogle Scholar
  43. 43.
    Kampinga HH (2006) Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia 22(3):191–196CrossRefGoogle Scholar
  44. 44.
    Lepock JR (2004) Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int J Hyperthermia 20(2):115–130CrossRefGoogle Scholar
  45. 45.
    Nishita M, Inoue S, Tsuda M, Tateda C, Miyashita T (1998) Nuclear translocation and increased expression of Bax and disturbance in cell cycle progression without prominent apoptosis induced by hyperthermia. Exp Cell Res 244(1):357–366CrossRefGoogle Scholar
  46. 46.
    Kampinga HH, Dikomey E (2001) Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 77(4):399–408CrossRefGoogle Scholar
  47. 47.
    Shen R-N, Lu L, Young P, Shidnia H, Hornback NB, Broxmeyer HE (1994) Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lectin-dependent cytotoxicity of human umbilical cord blood and adult blood cells. Int J Radiat Oncol Biol Phys 29(4):821–826CrossRefGoogle Scholar
  48. 48.
    Burd R, Dziedzic TS, Xu Y, Caligiuri MA, Subjeck JR, Repasky EA (1998) Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J Cell Physiol 177(1):137–147CrossRefGoogle Scholar
  49. 49.
    Pettigrew RT, Galt JM, Ludgate CM, Smith AN (1974) Clinical effects of whole-body hyperthermia in advanced malignancy. Br Med J 4(5946):679–682CrossRefGoogle Scholar
  50. 50.
    Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RAM, Diederich CJ, Bakker JF, Van Rhoon GC (2013) Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 29(4):346–357CrossRefGoogle Scholar
  51. 51.
    Varon J, Acosta P (2008) Therapeutic hypothermia: past, present, and future. Chest J 133(5):1267–1274CrossRefGoogle Scholar
  52. 52.
    Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465Google Scholar
  53. 53.
    Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497CrossRefGoogle Scholar
  54. 54.
    Lele PP (1990) Electronically-controlled variable focus ultrasound hyperthermia system.Google Scholar
  55. 55.
    Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201(1):413–419CrossRefGoogle Scholar
  56. 56.
    Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175CrossRefGoogle Scholar
  57. 57.
    Ang KL, Venkatraman S, Ramanujan RV (2007) Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater Sci Eng C 27(3):347–351CrossRefGoogle Scholar
  58. 58.
    INL (2017) International Iberian Nanotechnology.Google Scholar
  59. 59.
    Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34(11):3117–3123Google Scholar
  60. 60.
    Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7(29):12728–12736CrossRefGoogle Scholar
  61. 61.
    Shevtsov M, Multhoff G (2016) Recent developments of magnetic nanoparticles for theranostics of brain tumor. Curr Drug Metab 17(8):737–744CrossRefGoogle Scholar
  62. 62.
    Cavaliere R, Giogatto BC, Giovanella BC (1967) Selective heat sensitivity of cancer cells. Cancer 20(9):1351–1381CrossRefGoogle Scholar
  63. 63.
    Sellins KS, Cohen JJ (1991) Hyperthermia induces apoptosis in thymocytes. Radiat Res 126(1):88–95CrossRefGoogle Scholar
  64. 64.
    Paolini A, Guarch CP, Ramos-López D, Lapuente J, Lascialfari A, Guari Y, Larionova J, Long J, Nano R (2016) Rhamnose-coated superparamagnetic iron-oxide nanoparticles: an evaluation of their in vitro cytotoxicity, genotoxicity and carcinogenicity. J Appl Toxicol 36(4):510–520CrossRefGoogle Scholar
  65. 65.
    Wong RSL, Kapp LN, Krishnaswamy G, Dewey WC (1993) Critical steps for induction of chromosomal aberrations in CHO cells heated in S phase. Radiat Res 133(1):52–59CrossRefGoogle Scholar
  66. 66.
    Stahl H, Wust P, Maier-Hauff K, Seebass M, Mischel M, Gremmler M, Golde G, Löffel J, Felix R (1995) The use of an early postoperative interstitial-hyperthermia combination therapy in malignant gliomas. Strahlentherapie und Onkol. Organ der Dtsch. Rontgengesellschaft...[et al] 171(9):510–524Google Scholar
  67. 67.
    Sneed PK, Stauffer PR, McDermott MW, Diederich CJ, Lamborn KR, Prados MD, Chang S, Weaver KA, Spry L, Malec MK (1998) Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost±hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 40(2):287–295CrossRefGoogle Scholar
  68. 68.
    Mitsumori M, Hiraoka M, Okuno Y, Nishimura Y, Li YP, Fujishiro S, Nagata Y, Abe M, Koishi M, Sano T (1996) A phase I and II clinical trial of a newly developed ultrasound hyperthermia system with an improved planar transducer. Int J Radiat Oncol Biol Phys 36(5):1169–1175CrossRefGoogle Scholar
  69. 69.
    Wismeth C, Dudel C, Pascher C, Ramm P, Pietsch T, Hirschmann B, Reinert C, Proescholdt M, Rümmele P, Schuierer G (2010) Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas: phase I clinical results. J Neurooncol 98(3):395–405CrossRefGoogle Scholar
  70. 70.
    Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146(4):596CrossRefGoogle Scholar
  71. 71.
    Hoopes PJ, Petryk AA, Misra A, Kastner EJ, Pearce JA, Ryan TP (2015) Utility and translatability of mathematical modeling, cell culture and small and large animal models in magnetic nanoparticle hyperthermia cancer treatment research. SPIE BiOS, International Society for Optics and Photodermatol, p. 932604Google Scholar
  72. 72.
    Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24(6):467–474CrossRefGoogle Scholar
  73. 73.
    Attaluri A, Kandala SK, Wabler M, Zhou H, Cornejo C, Armour M, Hedayati M, Zhang Y, DeWeese TL, Herman C (2015) Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer. Int J Hyperthermia 31(4):359–374CrossRefGoogle Scholar
  74. 74.
    Kashevsky BE, Kashevsky SB, Korenkov VS, Istomin YP, Terpinskaya TI, Ulashchik VS (2015) Magnetic hyperthermia with hard-magnetic nanoparticles. J Magn Magn Mater 380:335–340CrossRefGoogle Scholar
  75. 75.
    Tang Y, Flesch RCC, Jin T (2017) A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels. J Magn Magn Mater 432:330–335CrossRefGoogle Scholar
  76. 76.
    Hervault A, Thanh NTK (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6(20):11553–11573CrossRefGoogle Scholar
  77. 77.
    Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R (1997) Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 13(6):587–605CrossRefGoogle Scholar
  78. 78.
    Schmid G (2011) Nanoparticles: from theory to application. Wiley, SomersetGoogle Scholar
  79. 79.
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324CrossRefGoogle Scholar
  80. 80.
    Frimpong RA, Dou J, Pechan M, Hilt JZ (2010) Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation. J Magn Magn Mater 322(3):326–331CrossRefGoogle Scholar
  81. 81.
    Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21(35):13388–13398CrossRefGoogle Scholar
  82. 82.
    Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N (2004) Size dependence of specific power absorption of Fe 3 O 4 particles in AC magnetic field. J Magn Magn Mater 268(1):33–39CrossRefGoogle Scholar
  83. 83.
    Zhang L-Y, Gu H-C, Wang X-M (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 311(1):228–233CrossRefGoogle Scholar
  84. 84.
    Müller R, Hergt R, Zeisberger M, Gawalek W (2005) Preparation of magnetic nanoparticles with large specific loss power for heating applications. J Magn Magn Mater 289:13–16CrossRefGoogle Scholar
  85. 85.
    Behdadfar B, Kermanpur A, Sadeghi-Aliabadi H, del Puerto Morales M, Mozaffari M (2012) Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route. J Solid State Chem 187:20–26CrossRefGoogle Scholar
  86. 86.
    Surendra MK, Dutta R, Ramachandra Rao MS (2014) Realization of highest specific absorption rate near superparamagnetic limit of CoFe 2 O 4 colloids for magnetic hyperthermia applications. Mater Res Express 1(2):26107CrossRefGoogle Scholar
  87. 87.
    Thorat ND, Khot VM, Salunkhe AB, Prasad AI, Ningthoujam RS, Pawar SH (2013) Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications. J Phys D Appl Phys 46(10):105003CrossRefGoogle Scholar
  88. 88.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167CrossRefGoogle Scholar
  89. 89.
    Huang S, Wang S-Y, Gupta A, Borca-Tasciuc D-A, Salon SJ (2012) On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas Sci Technol 23(3):35701CrossRefGoogle Scholar
  90. 90.
    Bi H, Ma S, Li Q, Han X (2016) Magnetically triggered drug release from biocompatible microcapsules for potential cancer therapeutics. J Mater Chem B 4(19):3269–3277CrossRefGoogle Scholar
  91. 91.
    Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brûlet A, Miraux S, Thiaudière E, Tan S, Brisson A (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2):1122–1140CrossRefGoogle Scholar
  92. 92.
    Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42(17):7099–7116CrossRefGoogle Scholar
  93. 93.
    Saint-Cricq P, Deshayes S, Zink JI, Kasko AM (2015) Magnetic field activated drug delivery using thermodegradable Azo-functionalised PEG-coated core–shell mesoporous silica nanoparticles. Nanoscale 7(31):13168–13172CrossRefGoogle Scholar
  94. 94.
    Oliveira H, Pérez-Andrés E, Thevenot J, Sandre O, Berra E, Lecommandoux S (2013) Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release 169(3):165–170CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiochemistryShah Abdul Latif UniversityKhairpurPakistan
  2. 2.School of Mathematics and PhysicsUniversity of LincolnLincolnUK
  3. 3.School of Physical Sciences and ComputingUniversity of Central LancashirePrestonUK

Personalised recommendations