Abstract
The query-checking problem for temporal logic may be formulated as follows. Given a Kripke structure M and a temporal-logic query of form \(\phi \left[ {\texttt {var}}\right] \), which may be thought of as a temporal formula with a missing propositional subformula \({\texttt {var}}\), find the most precise propositional formula f that, when substituted for \({\texttt {var}}\) in \(\phi \left[ {\texttt {var}}\right] \), ensures M satisfies the resulting temporal property. Query checking has been used for system comprehension, specification reconstruction, and other related applications in the formal analysis of systems.
In this paper we present an automaton-based methodology for query checking over linear temporal logic (LTL). While this problem is known to be hard in the general case, we show that by exploiting several key observations about the interplay between the input model M and the query \(\phi \left[ {\texttt {var}}\right] \), we can produce results for many problems of interest. In support of this claim, we report on preliminary experimental data for an implementation of our technique.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Ackermann, C., Cleaveland, R., Huang, S., Ray, A., Shelton, C., Latronico, E.: Automatic requirement extraction from test cases. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 1–15. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9_1
Armoni, R., et al.: The ForSpec temporal logic: a new temporal property-specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0_21
Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5_8
Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bruns, G., Godefroid, P.: Temporal logic query checking. In: 16th Annual IEEE Symposium on Logic in Computer Science, pp. 409–417. IEEE, June 2001
Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000). doi:10.1007/10722167_34
Chockler, H., Gurfinkel, A., Strichman, O.: Variants of LTL Query Checking. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504, pp. 76–92. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19583-9_11
Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. MIT Press (1990)
Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branching versus linear time temporal logic. JACM 33(1), 151–178 (1986)
Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1–3), 35–45 (2007)
Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000). doi:10.1007/3-540-44618-4_13
Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001). doi:10.1007/3-540-44585-4_6
Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002). doi:10.1007/3-540-36135-9_20
Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: a tool for model exploration. IEEE Trans. Soft. Eng. 29(10), 898–914 (2003)
Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining. In: 30th IEEE/ACM International Conference on Automated Software Engineering, pp. 81–92. IEEE, Lincoln, November 2015
Li, W., Forin, A., Seshia, S.A.: Scalable specification mining for verification and diagnosis. In: 47th Design Automation Conference, pp. 755–760. ACM, Anaheim, June 2010
Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using automata-based abstractions. IEEE Trans. Soft. Eng. 34(5), 651–666 (2008)
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: First Symposium on Logic in Computer Science, pp. 322–331. IEEE Computer Society, Boston, June 1986
Winter, K.: Model checking for abstract state machines. J. Univ. Comput. Sci. 3(5), 689–701 (1997)
Zhang, D., Cleaveland, R.: Efficient temporal-logic query checking for Presburger systems. In: 20th IEEE/ACM International Conference on Automated Software Engineering, pp. 24–33. ACM, Long Beach, November 2005
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Huang, S., Cleaveland, R. (2017). Query Checking for Linear Temporal Logic. In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds) Critical Systems: Formal Methods and Automated Verification. AVoCS FMICS 2017 2017. Lecture Notes in Computer Science(), vol 10471. Springer, Cham. https://doi.org/10.1007/978-3-319-67113-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-67113-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67112-3
Online ISBN: 978-3-319-67113-0
eBook Packages: Computer ScienceComputer Science (R0)