Skip to main content

Transdisciplinary Innovation and Future Evidence

  • Chapter
  • First Online:
P5 Medicine and Justice
  • 645 Accesses

Abstract

Future evidence in the bio-medicolegal sciences will emerge from transdisciplinary innovation, which, through the application of new technologies, involving the integration of imaging and bio-analysis, will be able to bridge knowledge gaps and reduce the black holes of knowledge, in an irreversible transition towards molecular evidence. The chapter depicts an overview of the contributions that every single discipline could bring to bio-medicolegal knowledge through its hyper-specialization, highlighting the role of transdisciplinary innovation, towards the realization of the Radiomics Project, the improvement of the level of Evidence and the diffusion of Educational Training, through an Interdisciplinary Masterplan, aimed at the scientific validation, certification and quality accreditation of the new technologies, with the ultimate goal of personalization, prediction and protection of human and personal rights, in the P5 Medicine and Justice perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pollak S (2007) Medical criminalistics. Forensic Sci Int 165:144–149

    Article  CAS  PubMed  Google Scholar 

  2. Thierauf A, Pollak S, Große Perdekamp M (2011) Medicolegal research: From casuistry to hypothesis-based studies. Fol Soc Med Leg Slov 1:54–57

    Google Scholar 

  3. Kimura A, Ishida Y, Hayashi T, Nosaka M, Kondo T (2010) Estimating time of death based on the biological clock. Int J Legal Med 125(3):385–391

    Google Scholar 

  4. Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203(1–3):93–98

    Article  CAS  PubMed  Google Scholar 

  5. Nosaka M, Ishida Y, Kimura A, Kondo T (2010) Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med 124(5):439–444

    Article  PubMed  Google Scholar 

  6. Hayashi T, Ishida Y, Mizunuma S, Kimura A, Kondo T (2009) Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression. Int J Legal Med 123(1):7–13

    Article  PubMed  Google Scholar 

  7. Sato Y, Ohshima T (2000) The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med 113(3):140–145

    Article  CAS  PubMed  Google Scholar 

  8. Hassan Gaballah M, Fukuta M, Maeno Y, Seko-Nakamura Y, Monma-Ohtaki J, Shibata Y, Kato H, Aoki Y, Takamiya M (2016) Simultaneous time course analysis of multiple markers based on DNA microarray in incised wound in skeletal muscle for woundaging. Forensic Sci Int 266:357–368

    Article  CAS  PubMed  Google Scholar 

  9. Pittner S, Ehrenfellner B, Monticelli FC, Zissler A, Sänger AM, Stoiber W, Steinbacher P (2016) Postmortem muscle protein degradation in humans as a tool for PMI delimitation. Int J Legal Med 130(6):1547–1555

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pittner S, Monticelli FC, Pfisterer A, Zissler A, Sänger AM, Stoiber W, Steinbacher P (2016) Postmortem degradation of skeletal muscle proteins: a novel approach to determine the time since death. Int J Legal Med 130(2):421–431

    Article  PubMed  Google Scholar 

  11. Hirakawa K, Koike K, Uekusa K, Nihira M, Yuta K, Ohno Y (2009) Experimental estimation of postmortem interval using multivariate analysis of proton NMR metabolomic data. Leg Med (Tokyo) 11 Suppl 1:S282–285

    Google Scholar 

  12. Maeda H, Ishikawa T, Michiue T (2014) Forensic molecular pathology: its impacts on routine work, education and training. Leg Med (Tokyo) 16(2):61–69

    Article  CAS  Google Scholar 

  13. Bensmail H, Haoudi A (2005) Data mining in genomics and proteomics. J Biomed Biotechnol 2:63–64

    Article  Google Scholar 

  14. Feala JD, Abdulhameed MD, Yu C, Dutta B, Yu X, Schmid K, Dave J, Tortella F, Reifman J (2013) Systems biology approaches for discovering biomarkers for traumatic brain injury. J Neurotrauma 30(13):1101–1116

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang L et al (2015) Posttraumatic Stress Disorder Biomarker—p 11. Available via DIALOG http://cdn.intechopen.com/pdfs-wm/48867.pdf. Accessed 17 Nov 2016

  16. Shao WH, Chen JJ, Fan SH, Lei Y, Xu HB, Zhou J, Cheng PF, Yang YT, Rao CL, Wu B, Liu HP, Xie P (2015) Combined metabolomics and proteomics analysis of major depression in an animal model: perturbed energy metabolism in the chronic mild stressed rat cerebellum. OMICS 19(7):383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walsh S, Liu F, Ballantyne KN, van Oven M, Lao O, Kayser M (2011) IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet 5(3):170–180

    Article  CAS  PubMed  Google Scholar 

  18. Walsh S, Liu F, Wollstein A et al (2013) The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci Int Genet 7(1):98–115

    Article  CAS  PubMed  Google Scholar 

  19. Kayser M (2015) Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 18:33–48

    Article  CAS  PubMed  Google Scholar 

  20. Phillips C (2015) Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet 18:49–65

    Article  CAS  PubMed  Google Scholar 

  21. Vennemann M, Koppelkamm A (2010) mRNA profiling in forensic genetics I: possibilities and limitations. Forensic Sci Int 203(1–3):71–75

    Article  CAS  PubMed  Google Scholar 

  22. Haas C, Hanson E, Banemann R et al (2015) RNA/DNA co-analysis from human skin and contact traces–results of a sixth collaborative EDNAP exercise. Forensic Sci Int Genet 16:139–147

    Article  CAS  PubMed  Google Scholar 

  23. Vidaki A, Daniel B, Court DS (2013) Forensic DNA methylation profiling–potential opportunities and challenges. Forensic Sci Int Genet 7(5):499–507

    Article  CAS  PubMed  Google Scholar 

  24. Parson W, Strobl C, Huber G et al (2013) Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 7(5):543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. King JL, LaRue BL, Novroski NM et al (2014) High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci Int Genet 12:128–135

    Article  CAS  PubMed  Google Scholar 

  26. http://www.innocenceproject.org/. Accessed 17 Nov 2016

  27. Carracedo A (2015) Forensic genetics: history. In: Houck MM (ed) Forensic Biology, p 19, Elsevier Inc

    Google Scholar 

  28. Wang Y, Jurgen B, Weida T (2013) Toxicogenomics–a drug development perspective. In: Yao Y, Jallal B, Ranade K (eds) Genomic biomarkers for pharmaceutical development. Elsevier Inc

    Google Scholar 

  29. Morris MK, Chi A, Melas IN, Alexopoulos LG (2014) Phosphoproteomics in drug discovery. Drug Discov Today 19:425–432

    Article  CAS  PubMed  Google Scholar 

  30. Frech TM, Revelo MP, Ryan JJ et al (2015) Cardiac metabolomics and autopsy in a patient with early diffuse systemic sclerosis presenting with dyspnea: a case report. J Med Case Rep 9:136

    Article  PubMed  PubMed Central  Google Scholar 

  31. Castillo-Peinado LS, Luque de Castro MD (2016) Present and foreseeable future of metabolomics in forensic analysis. Anal Chim Acta 925:1–15

    Article  CAS  PubMed  Google Scholar 

  32. Bouhifd M, Hogberg HT, Kleensang A, Maertens A, Zhao L, Hartung T (2014) Mapping the human toxome by systems toxicology. Basic Clin Pharmacol Toxicol 115(1):24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouhifd M, Andersen ME, Baghdikian C et al (2015) The human toxome project. Altex 32:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu H, Liao J, Jiang W, Wang W (2014) Changes in low-frequency fluctuations in patients with antisocial personality disorder revealed by resting-state functional MRI. PLoS ONE 9(3):e89790

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reginold W, Luedke AC, Itorralba J, Fernandez-Ruiz J, Islam O, Garcia A (2016) Altered Superficial White Matter on Tractography MRI in Alzheimer’s Disease. Dement Geriatr Cogn Dis Extra 6(2):233–241

    Article  PubMed  PubMed Central  Google Scholar 

  36. Biswas SK, van Es P, Steenbergen W, Manohar S (2016) A method for delineation of bone surfaces in photoacoustic computed tomography of the finger. Ultrason Imaging 38(1):63–76

    Article  CAS  PubMed  Google Scholar 

  37. Dierolf M, Menzel A, Thibault P, Schneider P, Kewish CM, Wepf R, Bunk O, Pfeiffer F (2010) Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314):436–439

    Article  CAS  PubMed  Google Scholar 

  38. Bouma BE et al (2008) Optical frequency domain imaging. In: Drexler W, Fujimoto JG (eds) Optical coherence tomography. Springer, Berlin Heidelberg, pp 209–237

    Chapter  Google Scholar 

  39. Meyer CH, Saxena S, SriniVas RS (eds) (2016) Spectral domain optical coherence tomography in macular diseases. Springer, Berlin Heidelberg

    Google Scholar 

  40. Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V (2012) FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods 9(6):615–620

    Article  CAS  PubMed  Google Scholar 

  41. Blitz AM, Aygun N, Herzka DA (2015) Invited commentary: the rise of microradiology. Radiographics 35(4):1091–1093

    Article  PubMed  Google Scholar 

  42. Rutty GN, Brough A, Biggs MJ, Robinson C, Lawes SD, Hainsworth SV (2013) The role of micro-computed tomography in forensic investigations. Forensic Sci Int 225(1–3):60–66

    Article  CAS  PubMed  Google Scholar 

  43. Cecchetto G, Giraudo C, Amagliani A et al (2011) Estimation of the firing distance through micro-CT analysis of gunshot wounds. Int J Legal Med 125(2):245–251

    Article  PubMed  Google Scholar 

  44. Tassani S, Matsopoulos GK (2014) The micro-structure of bone trabecular fracture: an inter-site study. Bone 60:78–86

    Article  PubMed  Google Scholar 

  45. Giraudo C, Fais P, Pelletti G et al (2016) Micro-CT features of intermediate gunshot wounds covered by textiles. Int J Legal Med 130(5):1257–1264

    Article  PubMed  Google Scholar 

  46. Cecchetto G, Amagliani A, Giraudo C et al (2012) MicroCT detection of gunshot residue in fresh and decomposed firearm wounds. Int J Legal Med 126(3):377–383

    Article  PubMed  Google Scholar 

  47. Fais P, Giraudo C, Boscolo-Berto R et al (2013) Micro-CT features of intermediate gunshot wounds severely damaged by fire. Int J Legal Med 127(2):419–425

    Article  PubMed  Google Scholar 

  48. Rutty JE, Morgan B, Rutty GN (2015) Managing transformational change: implementing cross-sectional imaging into death investigation services in the United Kingdom. J Forensic Radiology Imaging 3(1):57–60

    Article  Google Scholar 

  49. Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yen K, Vock P, Tiefenthaler B, Ranner G, Scheurer E, Thali MJ, Zwygart K, Sonnenschein M, Wiltgen M, Dirnhofer R (2004) Virtopsy: forensic traumatology of the subcutaneous fatty tissue; multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) as diagnostic tools. J Forensic Sci 49(4):799–806

    Article  PubMed  Google Scholar 

  51. Saint-Martin P, Rérolle C, Dedouit F, Rousseau H, Rougé D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis–a preliminary study focusing on the 18-year threshold. Int J Legal Med 128(4):675–683

    Article  PubMed  Google Scholar 

  52. Urschler M, Grassegger S, Štern D (2015) What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents. Ann Hum Biol 42(4):358–367

    Article  PubMed  Google Scholar 

  53. Cattaneo C, Porta D, De Angelis D, Gibelli D, Poppa P, Grandi M (2010) Unidentified bodies and human remains: an Italian glimpse through a European problem. Forensic Sci Int 195(1–3):167.e1–6

    Google Scholar 

  54. Paulozzi LJ, Cox CS, Williams DD, Nolte KB (2008) John and Jane Doe: the epidemiology of unidentified decedents. J Forensic Sci 53(4):922–927

    Article  PubMed  Google Scholar 

  55. Grabherr S, Cooper C, Ulrich-Bochsler S et al (2009) Estimation of sex and age of “virtual skeletons”- a feasibility study. Eur Radiol 19(2):419–429

    Article  PubMed  Google Scholar 

  56. Pinchi V, De Luca F, Focardi M, Pradella F, Vitale G, Ricciardi F, Norelli GA (2016) Combining dental and skeletal evidence in age classification: pilot study in a sample of Italian sub-adults. Leg Med (Tokyo) 20:75–79

    Article  Google Scholar 

  57. Pinchi V, Pradella F, Buti J, Baldinotti C, Focardi M, Norelli GA (2015) A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: a pilot study. J Forensic Leg Med 36:150–157

    Article  PubMed  Google Scholar 

  58. Foy CB, Ethier J, Senn DR (2008) Exemplar creation in bitemark analysis using cone beam computed tomography. Paper presented at American academy of forensic sciences, F33 odontology section, Washington, DC

    Google Scholar 

  59. Richards CS, Simonsen TJ, Abel RL, Hall MJ, Schwyn DA, Wicklein M (2012) Virtual forensic entomology: improving estimates of minimum post-mortem interval with 3D micro-computed tomography. Forensic Sci Int 220(1–3):251–264

    Article  PubMed  Google Scholar 

  60. Magni PA, Pazzi M, Vincenti M, Alladio E, Brandimarte M, Dadour IR (2016) Development and validation of a GC-MS method for nicotine detection in Calliphora vomitoria (L.) (Diptera: Calliphoridae). Forensic Sci Int 261:53–60

    Article  CAS  PubMed  Google Scholar 

  61. De Carvalho LML (2009) Toxicology and forensic entomology. In: Amendt J, Goff ML, Campobasso CP, Grassberger M (eds) Current concepts in forensic entomology. Springer, Netherlands, pp 163–178

    Chapter  Google Scholar 

  62. Pietrini P (2003) Toward a biochemistry of mind? Am J Psychiatry 160(11):1907–1908

    Article  PubMed  Google Scholar 

  63. Pellegrini S (2015) Behavioral genetics in criminal trials: where do we stand?. International Academy of Law and Mental Health Meeting, Vienna

    Google Scholar 

  64. Tiihonen J, Rautiainen M, Ollila HM et al (2015) Genetic background of extreme violent behavior. Mol Psychiatry 20:786–792

    Article  CAS  PubMed  Google Scholar 

  65. Rea IM, Dellet M, Mills KI; ACUME2 Project (2016) Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology 17(1):33–54

    Google Scholar 

  66. Rota G, Pellegrini S, Pietrini P (2014) The antisocial brain: novel insights from Neuroscience and molecular biology. Politica e Società 2:201–220

    Google Scholar 

  67. Aharoni E, Mallett J, Vincent GM, Harenski CL, Calhoun VD, Sinnott-Armstrong W, Gazzaniga MS, Kiehl KA (2014) Predictive accuracy in the neuroprediction of rearrest. Soc Neurosci 9(4):332–336

    Article  PubMed  PubMed Central  Google Scholar 

  68. Steele VR, Claus ED, Aharoni E, Vincent GM, Calhoun VD, Kiehl KA (2015) Multimodal imaging measures predict rearrest. Front Hum Neurosci 9:425

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tidball-Binz M (2012) Global forensic science and the search for the dead and missing from armed conflict: The perspective of the international committee of the red cross. In: Ubelaker DH (ed) Forensic science: current issues, Future Directions. John Wiley & Sons Ltd, Chichester, UK

    Google Scholar 

  70. Freeman JB, Dale R, Farmer TA (2011) Hand in motion reveals mind in motion. Frontiers in Psychology 2:59

    Article  PubMed  PubMed Central  Google Scholar 

  71. Duran N, Dale R, McNamara DS (2010) The action dynamics of overcoming the truth. Psychon Bull Rev 17(4):486–491

    Article  PubMed  Google Scholar 

  72. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures. They Are Data. Radiology 278(2):563–577

    PubMed  Google Scholar 

  73. Coroller TP, Grossmann P, Hou Y et al (2015) CT based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114(3):345–350

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ferrara SD, Pfeiffer H (2010) Unitariness, evidence and quality in bio-medicolegal sciences. Int J Legal Med 124(4):343–344. doi:10.1007/s00414-010-0477-x. Erratum in: Int J Legal Med 124(6):673

  75. Lauer E, Villa M, Jotterand M, Vilarino R, Bollmann M, Michaud K, Grabherr S, Augsburger M, Thomas A (2017) Imaging mass spectrometry of elements in forensic cases by LA-ICP-MS. Int J Legal Med 131(2):497–500

    Article  PubMed  Google Scholar 

  76. Miki A, Katagi M, Kamata T, Zaitsu K, Tatsuno M, Nakanishi T, Tsuchihashi H, Takubo T, Suzuki K (2011) MALDI-TOF and MALDI-FTICR imaging mass spectrometry of methamphetamine incorporated into hair. J Mass Spectrom 46(4):411–416

    Article  CAS  PubMed  Google Scholar 

  77. Reich RF, Cudzilo K, Levisky JA, Yost RA (2010) Quantitative MALDI-MS(n) analysis of cocaine in the autopsied brain of a human cocaine user employing a wide isolation window and internal standards. J Am Soc Mass Spectrom 21(4):564–571

    Article  CAS  PubMed  Google Scholar 

  78. Porta T et al (2011) Molecular imaging by mass spectrometry: application to forensics. Spectrosc Eur 23(5):6–12

    CAS  Google Scholar 

  79. Aichler M, Walch A (2015) MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest 95(4):422–431

    Article  CAS  PubMed  Google Scholar 

  80. Ferrara SD, Bajanowski T, Cecchi R, Snenghi R, Case C, Viel G (2010) Bio-medicolegal guidelines and protocols: survey and future perspectives in Europe. Int J Legal Med 124(4):345–350. doi:10.1007/s00414-010-0475-z. Erratum in: Int J Legal Med 124(6):671

  81. Ferrara SD, Bajanowski T, Cecchi R, Boscolo-Berto R, Viel G (2011) Bio-medicolegal scientific research in Europe: a comprehensive bibliometric overview. Int J LegalMed 125(3):393–402

    Article  Google Scholar 

  82. Viel G, Boscolo-Berto R, Cecchi R, Bajanowski T, Vieira ND, Ferrara SD (2011) Bio-medicolegal scientific research in Europe. A country-based analysis. Int J Legal Med 125(5):717–725

    Article  PubMed  Google Scholar 

  83. Chen R, Mias GI, Li-Pook-Than J et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6):1293–1307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santo Davide Ferrara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrara, S.D. (2017). Transdisciplinary Innovation and Future Evidence. In: Ferrara, S. (eds) P5 Medicine and Justice. Springer, Cham. https://doi.org/10.1007/978-3-319-67092-8_39

Download citation

Publish with us

Policies and ethics