Omics in Forensic Toxicology a Bridge Towards Forensic Medicine

  • Nasim Bararpour
  • Frank Sporkert
  • Marc Augsburger
  • Aurélien Thomas


Cutting-edge omic strategies are bringing new opportunities to many fields of investigation from the biomedical to the biomedicolegal. Comprehension of molecular mechanisms associated with pathologies such as acute or chronic toxicity or sudden cardiac death and the discovery of associated biomarkers represent key elements in the development of novel routes for a better understanding of complex phenomena. Omics and mining of complex generated data have reached a state of maturity. Recent innovations, notably for mass spectrometry with a remarkable gain in sensitivity and selectivity, and the development of next-generation sequencing technologies, have considerably increased the power of these approaches. In spite of ongoing progress in the omic methodologies, their application can already provide informative results leading to more accurate interpretations and evidences. Beyond the remarkable potential in forensic toxicology such as the research of new biomarkers, we predict that these technologies will reinforce translational research between forensic and clinical disciplines.


  1. 1.
    Zierer J, Menni C, Kastenmuller G, Spector TD (2015) Integration of ‘omics’ data in aging research: from biomarkers to systems biology. Aging Cell 14:933–944PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Versace F, Déglon J, Mangin P, Staub C (2014) Application of direct-infusion ESI-MS/MS for toxicological screening. Bioanalysis 6(15):2043–2055PubMedCrossRefGoogle Scholar
  3. 3.
    Maurer HH (2013) What is the future of (ultra) high performance liquid chromatography coupled to low and high resolution mass spectrometry for toxicological drug screening? J Chromatogr A 1292:19–24PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Thomas A, Lenglet S, Chaurand P et al (2011) Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb Haemost 106(1):20–33PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang Z, Sun H, Yan G, Wang P, Han Y, Wang X (2014) Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett 345(1):17–20PubMedCrossRefGoogle Scholar
  7. 7.
    Wang-Sattler R, Yu Z, Herder C et al (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8:615PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Floegel A, Stefan N, Yu Z et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2):639–648PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen C, Gonzalez FJ, Idle JR (2007) LC-MS-based metabolomics in drug metabolism. Drug Metab Rev 39:581–597PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1(2):153–1561PubMedCrossRefGoogle Scholar
  12. 12.
    Nielsen KL, Telving R, Andreasen MF, Hasselstrøm JB, Johannsen M (2016) A metabolomics study of retrospective forensic data from whole blood samples of humans exposed to 3,4-methylenedioxymethamphetamine: a new approach for identifying drug metabolites and changes in metabolism related to drug consumption. J Proteome Res 15(2):619–627PubMedCrossRefGoogle Scholar
  13. 13.
    Shin SY, Fauman EB, Petersen AK et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46(6):543–550PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362):54–60PubMedCrossRefGoogle Scholar
  15. 15.
    Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinform 17(Suppl 2):15CrossRefGoogle Scholar
  16. 16.
    Jaremek M, Yu Z, Mangino M et al (2013) Alcohol-induced metabolomic differences in humans. Transl Psychiatry 3:e276PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kharbouche H, Faouzi M, Sanchez N, Daeppen JB, Augsburger M, Mangin P, Staub C, Sporkert F (2012) Diagnostic performance of ethyl glucuronide in hair for the investigation of alcohol drinking behavior: a comparison with traditional biomarkers. Int J Legal Med 126(2):243–250PubMedCrossRefGoogle Scholar
  18. 18.
    Wurst FM, Thon N, Yegles M, Schrück A, Preuss UW, Weinmann W (2015) Ethanol metabolites: their role in the assessment of alcohol intake. Alcohol Clin Exp Res 39(11):2060–2072PubMedCrossRefGoogle Scholar
  19. 19.
    Hart AB, Kranzler HR (2015) Alcohol dependence genetics: lessons learned from genome-wide association studies (GWAS) and post-GWAS analyses. Alcohol Clin Exp Res 39(8):1312–1327PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kapoor M, Wang JC, Wetherill L et al (2014) Genome-wide survival analysis of age at onset of alcohol dependence in extended high-risk COGA families. Drug Alcohol Depend 142:56–62PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kutalik Z, Benyamin B, Bergmann S et al (2011) Genome-wide association study identifies two loci strongly affecting transferrin glycosylation. Hum Mol Genet 20(18):3710–3717PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nagalakshmi U, Waern K, Snyder M (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol 4:4.11.1–13Google Scholar
  23. 23.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382PubMedCrossRefGoogle Scholar
  25. 25.
    Farris SP, Arasappan D, Hunicke-Smith S, Harris RA, Mayfield RD (2015) Transcriptome organization for chronic alcohol abuse in human brain. Mol Psychiatry 20(11):1438–1447PubMedCrossRefGoogle Scholar
  26. 26.
    Farris SP, Pietrzykowski AZ, Miles MF et al (2015) Applying the new genomics to alcohol dependence. Alcohol 49(8):825–836PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wang J, Yuan W, Li MD (2011) Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 44(3):269–286PubMedCrossRefGoogle Scholar
  28. 28.
    Schneider B, Chevallier C, Dominguez A, Bruguier C, Elandoy C, Mangin P, Grabherr S (2012) The forensic radiographer: A new member in the medicolegal team. Am J Forensic Med Pathol 33(1):30–36PubMedCrossRefGoogle Scholar
  29. 29.
    Grabherr S, Doenz F, Steger B et al (2011) Multi-phase post-mortem CT angiography: Development of a standardized protocol. Int J Legal Med 125(6):791–802PubMedCrossRefGoogle Scholar
  30. 30.
    Michaud K, Grabherr S, Jackowski C, Bollmann MD, Doenz F, Mangin P (2014) Postmortem imaging of sudden cardiac death. Int J Legal Med 128(1):127–137PubMedCrossRefGoogle Scholar
  31. 31.
    Chaurand P (2012) Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J Proteomics 75(16):4883–4892PubMedCrossRefGoogle Scholar
  32. 32.
    Chaurand P, Schwartz SA, Reyzer ML, Caprioli RM (2005) Imaging mass spectrometry: principles and potentials. Toxicol Pathol 33(1):92–101PubMedCrossRefGoogle Scholar
  33. 33.
    Thomas A, Chaurand P (2014) Advances in tissue section preparation for MALDI imaging MS. Bioanalysis 6(7):967–982PubMedCrossRefGoogle Scholar
  34. 34.
    Reyzer ML, Caprioli RM (2007) MALDI-MS-based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol 11(1):29–35PubMedCrossRefGoogle Scholar
  35. 35.
    Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113(4):2309–2342PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Thomas A, Patterson NH, Laveaux Charbonneau J, Chaurand P (2013) Orthogonal organic and aqueous-based washes of tissue sections to enhance protein sensitivity by MALDI imaging mass spectrometry. J Mass Spectrom 48(1):42–48PubMedCrossRefGoogle Scholar
  37. 37.
    Thomas A, Charbonneau JL, Fournaise E, Chaurand P (2012) Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal Chem 84(4):2048–2054PubMedCrossRefGoogle Scholar
  38. 38.
    Chaurand P, Caprioli RM (2002) Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis 23(18):3125–3135PubMedCrossRefGoogle Scholar
  39. 39.
    Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, Vinatier D, Wisztorski M, Day R, Fournier I, Salzet M (2009) MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Mol Cell Proteomics 8(9):2023–2033PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wolfender JL, Marti G, Thomas A, Bertrand S (2015) Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 1382:136–164PubMedCrossRefGoogle Scholar
  41. 41.
    Porta T, Varesio E, Kraemer T, Hopfgartne G (2011) Molecular imaging by mass spectrometry: application to forensics. Spectrosc Eur 23:6–13Google Scholar
  42. 42.
    Hoffmann WD, Jackson GP (2015) Forensic mass spectrometry. Annu Rev Anal Chem (Palo Alto Calif) 8:419–440CrossRefGoogle Scholar
  43. 43.
    Ifa DR, Manicke NE, Dill AL, Cooks RG (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321(5890):805PubMedCrossRefGoogle Scholar
  44. 44.
    Bradshaw R, Rao W, Wolstenholme R, Clench MR, Bleay S, Francese S (2012) Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging. Forensic Sci Int 222(1–3):318–326PubMedCrossRefGoogle Scholar
  45. 45.
    Sun N, Walch A (2013) Qualitative and quantitative mass spectrometry imaging of drugs and metabolites in tissue at therapeutic levels. Histochem Cell Biol 140(2):93–104PubMedCrossRefGoogle Scholar
  46. 46.
    Porta T, Grivet C, Kraemer T, Varesio E, Hopfgartner G (2011) Single hair cocaine consumption monitoring by mass spectrometric imaging. Anal Chem 83(11):4266–4272PubMedCrossRefGoogle Scholar
  47. 47.
    Kamata T, Shima N, Sasaki K, Matsuta S, Takei S, Katagi M, Miki A, Zaitsu K, Nakanishi T, Sato T, Suzuki K, Tsuchihashi H (2015) Time-course mass spectrometry imaging for depicting drug incorporation into hair. Anal Chem 87(11):5476–5481PubMedCrossRefGoogle Scholar
  48. 48.
    Hanrieder J, Ekegren T, Andersson M, Bergquist J (2013) MALDI imaging of post-mortem human spinal cord in amyotrophic lateral sclerosis. J Neurochem 124(5):695–707PubMedCrossRefGoogle Scholar
  49. 49.
    Fineschi V (2015) Measuring myocyte oxidative stress and targeting cytokines to evaluate inflammatory response and cardiac repair after myocardial infarction. Curr Vasc Pharmacol 13(1):3–5PubMedCrossRefGoogle Scholar
  50. 50.
    Seeley EH, Caprioli RM (2012) 3D imaging by mass spectrometry: a new frontier. Anal Chem 84(5):2105–2110PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B (2005) Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom 16(7):1093–1099PubMedCrossRefGoogle Scholar
  52. 52.
    Andersson M, Groseclose MR, Deutch AY, Caprioli RM (2008) Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods 5(1):101–108PubMedCrossRefGoogle Scholar
  53. 53.
    Oetjen J, Veselkov K, Watrous J, McKenzie JS, Becker M, Hauberg-Lotte L, Kobarg JH, Strittmatter N, Mróz AK, Hoffmann F, Trede D, Palmer A, Schiffler S, Steinhorst K, Aichler M, Goldin R, Guntinas-Lichius O, von Eggeling F, Thiele H, Maedler K, Walch A, Maass P, Dorrestein PC, Takats Z, Alexandrov T (2015) Benchmark datasets for 3D MALDI-and DESI-imaging mass spectrometry. Gigascience 4:20PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Patterson NH, Doonan RJ, Daskalopoulou SS, Dufresne M, Lenglet S, Montecucco F, Thomas A, Chaurand P (2016) Three-dimensional imaging MS of lipids in atherosclerotic plaques: open-source methods for reconstruction and analysis. Proteomics 16(11–12):1642–1651PubMedCrossRefGoogle Scholar
  55. 55.
    Sinha TK, Khatib-Shahidi S, Yankeelov TE et al (2008) Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat Methods 5(1):57–59PubMedCrossRefGoogle Scholar
  56. 56.
    Oetjen J, Aichler M, Trede D et al (2013) MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation. J Proteomics 90:52–60PubMedCrossRefGoogle Scholar
  57. 57.
    Michaud K, Grabherr S, Doenz F, Mangin P (2012) Evaluation of postmortem MDCT and MDCT-angiography for the investigation of sudden cardiac death related to atherosclerotic coronary artery disease. Int J Cardiovasc Imaging 28(7):1807–1822PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Nasim Bararpour
    • 1
    • 2
  • Frank Sporkert
    • 1
  • Marc Augsburger
    • 1
  • Aurélien Thomas
    • 1
    • 3
  1. 1.Unit of ToxicologyUniversity Center of Legal MedicineLausanne-GenevaSwitzerland
  2. 2.GenevaSwitzerland
  3. 3.Faculty of Biology and Medicine, Lausanne University HospitalUniversity of LausanneLausanneSwitzerland

Personalised recommendations