Advertisement

Metabolomics and Molecular Imaging in the Post-genomic Era

  • Linda Illig
  • Thomas Illig
Chapter

Abstract

Metabolomics and Molecular Imaging are important tools in targeted medicine for better understanding disease pathoetiology and etiopathogenesis, as well as for improved diagnostics and therapy. Advances in analytical biochemistry have recently made it possible to obtain global snapshots of metabolism. In particular, the combination of different molecular omics techniques shows major differentiations in the metabolic make-up of the human population. Metabolites may determine the risk for a certain medical phenotype, the response to a given drug treatment, and the reaction to a nutritional intervention or environmental challenge. Molecular imaging (MI) is based on the idea that diagnostic tracers are concentrated in specific areas because of their interaction with molecular species that are distinctly present in a diseased state. Current molecular imaging techniques include positron emission tomography (PET), magnetic resonance imaging (MRI), ultrasonography (US), and computed tomography (CT). MI is non-invasive, allows serial investigations and can monitor the therapeutic efficacy of drugs during the entire course of treatment.

References

  1. 1.
    Daviss B (2005) Growing pains for metabolomics. The Scientist 19(8):25–28Google Scholar
  2. 2.
    Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455(7216):1054–1056. doi: 10.1038/4551054aCrossRefPubMedGoogle Scholar
  3. 3.
    Wang-Sattler R, Yu Z, Herder C et al (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8:615. doi: 10.1038/msb.2012.43CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Xu T, Brandmaier S, Messias AC et al (2015) Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diab Care 38(10):1858–1867. doi: 10.2337/dc15-0658CrossRefGoogle Scholar
  5. 5.
    Kastenmüller G, Raffler J, Gieger C, Suhre K (2015) Genetics of human metabolism: an update. Hum Mol Genet 24(R1):R93–R101. doi: 10.1093/hmg/ddv263CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U (2015) Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods 12(11):1091–1097. doi: 10.1038/nmeth.3584CrossRefPubMedGoogle Scholar
  7. 7.
    Society of Nuclear Medicine and Molecular Imaging. http://www.snmmi.org/AboutSNMMI/CMIIT.aspx?ItemNumber=6559
  8. 8.
    Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19(3):212–219CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hindorff LA, Sethupathy P, Junkins HA, Ramosa EM, Mehtac JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmüller G, Kato BS, Mewes HW, Meitinger T, de Angelis MH, Kronenberg F, Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42(2):137–141CrossRefPubMedGoogle Scholar
  11. 11.
    Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg F, Meitinger T, Mewes HW, Wichmann HE, Weinberger KM, Adamski J, Illig T, Suhre K (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4(11):e1000282CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kathiresan S, Melander O, Guiducci C et al (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40(2):189–197. doi: 10.1038/ng.75CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Willer CJ, Sanna S, Jackson AU et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40(2):161–169. doi: 10.1038/ng.76CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mootha VK, Hirschhorn JN (2010) Inborn variation in metabolism. Nat Genet 42(2):97–98. doi: 10.1038/ng0210-97CrossRefPubMedGoogle Scholar
  15. 15.
    Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C, Roemisch-Margl W, Polonikov A, Peters A, Theis FJ, Meitinger T, Kronenberg F, Weidinger S, Wichmann HE, Suhre K, Wang-Sattler R, Adamski J, Illig T (2011) Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet 7(8):e1002215. doi: 10.1371/journal.pgen.1002215CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hughes TP, Branford S (2009) Monitoring disease response to tyrosine kinase inhibitor therapy in CML. Hematology Am Soc Hematol Educ Program 477–487Google Scholar
  17. 17.
    Nicholson JK, Wilson ID, Lindon JC (2011) Pharmacometabonomics as an effector for personalized medicine. Pharmacogenomics 12(1):103–111CrossRefPubMedGoogle Scholar
  18. 18.
    He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R, Li Y, Illig T, Wang-Sattler R, Rujescu D (2012) Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry 14(2):e149. doi:10.1038CrossRefGoogle Scholar
  19. 19.
    Altmaier E, Menni C, Heier M, Meisinger C, Thorand B, Quell J, Kobl M, Römisch-Margl w, Valdes AM, Mangino M, Waldenberger M, Strauch K, Illig T, Adamski J, Spector T, Gieger C, Suhre K, Kastenmüller G (2016) The pharmacogenetic footprint of ACE inhibition: a population-based metabolomics study. PLoS ONE 11(4):e0153163CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yu Z, Kastenmüller G, He Y, Belcredi P, Möller G, Prehn C, Mendes J, Wahl S, Roemisch-Margl W, Ceglarek U, Polonikov A, Dahmen N, Prokisch H, Xie L, Li Y, Wichmann HE, Peters A, Kronenberg F, Suhre K, Adamski J, Illig T, Wang-Sattler R (2011) Differences between human plasma and serum metabolite profiles. PLoS ONE 6(7):e21230. doi: 10.1371/journal.pone.0021230CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, Römisch-Margl W, Lattka E, Gieger C, Soranzo N, Heinrich J, Standl M, Thiering E, Mittelstraß K, Wichmann HE, Peters A, Suhre K, Li Y, Adamski J, Spector TD, Illig T, Wang-Sattler R (2012) Human serum metabolic profiles are age dependent. Aging Cell 11(6):960–967. doi: 10.1111/j.1474-9726.2012.00865.xCrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Anton G, Wilson R, Yu ZH, Prehn C, Zukunft S, Adamski J, Heier M, Meisinger C, Römisch-Margl W, Wang-Sattler R, Hveem K, Wolfenbuttel B, Peters A, Kastenmüller G, Waldenberger M (2015) Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS ONE 10(3):e0121495. doi: 10.1371/journal.pone.0121495CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gauberti M, Montagne A, Quenault A, Vivien D (2014) Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 8:389. doi: 10.3389/fncel.2014.00389CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Holmes E, Tsang TM, Huang JT, Leweke FM, Koethe D, Gerth CW, Nolden BM, Gross S, Schreiber D, Nicholson JK, Bahn S (2006) Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3(8):e327CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim SH, Lee JH, Hyun H, Ashitate Y, Park G, Robichaud K, Lunsford E, Lee SJ, Khang G, Choi HS (2013) Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Sci Rep 3:1198. doi: 10.1038/srep01198CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Xu R, Huang L, Wei W, Chen X, Zhang X, Zhang X (2016) Real-time imaging and tracking of ultrastable organic dye nanoparticles in living cells. Biomaterials 93:38–47. doi: 10.1016/j.biomaterials.2016.03.045CrossRefPubMedGoogle Scholar
  27. 27.
    Lüneburg N, Lieb W, Zeller T et al (2014) Genome-wide association study of L-arginine and dimethylarginines reveals novel metabolic pathway for symmetric dimethylarginine. Circ Cardiovasc Genet 7(6):864–872. doi: 10.1161/CIRCGENETICS.113.000264CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schaarschmidt H, Ellinghaus D, Rodríguez E, Kretschmer A, Baurecht H, Lipinski S, Meyer-Hoffert U, Harder J, Lieb W, Novak N, Fölster-Holst R, Esparza-Gordillo J, Marenholz I, Ruschendorf F, Hubner N, Reischl E, Waldenberger M, Gieger C, Illig T, Kabesch M, Zhang XJ, Xiao FL, Lee YA, Franke A, Weidinger S (2015) A genome-wide association study reveals 2 new susceptibility loci for atopic dermatitis. J Allergy Clin Immunol 136(3):802–826. doi: 10.1016/j.jaci.2015.01.047CrossRefPubMedGoogle Scholar
  29. 29.
    Shungin D, Winkler TW, Croteau-Chonka DC et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518(7538):187–196. doi: 10.1038/nature14132CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kilpeläinen TO, Carli JF, Skowronski AA et al (2016) Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat Commun 7:10494. doi: 10.1038/ncomms10494CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Maxmen A (2011) Exome sequencing deciphers rare diseases. Cell 144:635–637CrossRefPubMedGoogle Scholar
  32. 32.
    Newgard CB, Attie AD (2010) Getting biological about the genetics of diabetes. Nat Med 16(4):388–391. doi: 10.1038/nm0410-388CrossRefPubMedGoogle Scholar
  33. 33.
    Suhre K, Raffler J, Kastenmüller G (2016) Biochemical insights from population studies with genetics and metabolomics. Arch Biochem Biophys 589:168–176CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Hannover Unified BiobankClinical Research Center HannoverHannoverGermany

Personalised recommendations