Model Checking CTL over Restricted Classes of Automatic Structures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10506)

Abstract

Interpreting formulas over infinite-state relational structures whose states are words over some alphabet and whose relations are recognised by transducers is known under the term “automatic structures” in the world of predicate logic, or as “regular model checking” in formal verification. Both approaches use synchronised transducers, i.e. finite automata reading tuples of letters in each step. This is a strong transducer model with high expressive power leading to undecidability of model checking for any specification language that can express transitive closure.

We develop conditions on a class of binary word relations which are sufficient for the CTL model checking problem to be computable over the class of automatic structures generated by such relations. As an example, we consider recognisable relations. This is an interesting model from an algebraic point of view but it is also far less expressive than those given by synchronised transducers. As a consequence of the weaker expressive power we obtain that this class satisfies the aforementioned sufficient conditions, hence we obtain a decidability result for CTL model checking over a restricted class of infinite-state automatic structures.

References

  1. 1.
    Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made simple and effcient. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 116–131. Springer, Heidelberg (2002). doi:10.1007/3-540-45694-5_9 CrossRefGoogle Scholar
  2. 2.
    I. Accellera Organization. Formal semantics of Accellera property specification language (2004). In Appendix B. http://www.eda.org/vfv/docs/PSL-v1.1.pdf
  3. 3.
    Axelsson, R., Hague, M., Kreutzer, S., Lange, M., Latte, M.: Extended computation tree logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 67–81. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16242-8_6 CrossRefGoogle Scholar
  4. 4.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  5. 5.
    Berstel, J.: Transductions and Context-Free Languages. Leitfäden der angewandten Mathematik und Mechanik. Teubner (1979)Google Scholar
  6. 6.
    Blumensath, A.: Automatic structures. Master’s thesis, RWTH Aachen (1999)Google Scholar
  7. 7.
    Blumensath, A., Grädel, E.: Automatic structures. In: Proceedings of the 15th Symposium on Logic in Computer Science, LICS 2000, pp. 51–62. IEEE (2000)Google Scholar
  8. 8.
    Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27813-9_29
  9. 9.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000). doi:10.1007/10722167_31 CrossRefGoogle Scholar
  10. 10.
    Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite sequential processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 419–429. Springer, Heidelberg (1997). doi:10.1007/3-540-63165-8_198 CrossRefGoogle Scholar
  11. 11.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774 CrossRefGoogle Scholar
  12. 12.
    Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. J. Log. Algebr. Program 52–53, 109–127 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science, volume I - Finite State Systems of Cambridge Tracts in Theor. Comp. Sc. Cambridge Univ. Press (2016)Google Scholar
  14. 14.
    Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs using fixpoints. In: Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2_69 CrossRefGoogle Scholar
  15. 15.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)CrossRefMATHGoogle Scholar
  16. 16.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Habermehl, P., Vojnar, T.: Regular model checking using inference of regular languages. In: Proceedings of the 6th International Workshop on Verification of Infinite-State Systems, INFINITY 2004, vol. 138(3), pp. 21–36 (2005)Google Scholar
  19. 19.
    Hamaguchi, K., Hiraishi, H., Yajima, S.: Branching time regular temporal logic for model checking with linear time complexity. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 253–262. Springer, Heidelberg (1991). doi:10.1007/BFb0023739 CrossRefGoogle Scholar
  20. 20.
    Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)CrossRefMATHGoogle Scholar
  21. 21.
    Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying infinite-state systems. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 220–235. Springer, Heidelberg (2000). doi:10.1007/3-540-46419-0_16
  22. 22.
    Resten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 424–435. Springer, Heidelberg (1997). doi:10.1007/3-540-63166-6_41 CrossRefGoogle Scholar
  23. 23.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. TCS 27, 333–354 (1983)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mateescu, R., Monteiro, P.T., Dumas, E., Jong, H.: Computation tree regular logic for genetic regulatory networks. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 48–63. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88387-6_6 CrossRefGoogle Scholar
  25. 25.
    Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980)MATHGoogle Scholar
  26. 26.
    Ong, C.-H.L.: Higher-order model checking: an overview. In: Proceedings of the 30th IEEE Symposium on Logic in Computer Science, LICS 2015, pp. 1–15. IEEE Computer Society (2015)Google Scholar
  27. 27.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Symposium on Foundations of Computer Science, FOCS 1977, pp. 46–57. IEEE, Providence (1977)Google Scholar
  28. 28.
    Reisig, W.: Petri Nets (An Introduction). EATCS Monographs on Theoretical Computer Science, vol. 4. Springer, Heidelberg (1985)CrossRefMATHGoogle Scholar
  29. 29.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  30. 30.
    Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Inf. Control 54(1/2), 121–141 (1982)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sutner, K.: Iterating transducers. Fundam. Inf. 138(1–2), 259–272 (2015)MathSciNetMATHGoogle Scholar
  32. 32.
    Touili, T.: Regular model checking using widening techniques. In: Proceedings of the Workshop on Verification of Parameterized Systems, VEPAS 2001. Electr. Notes Theor. Comput. Sci., vol. 50(4), pp. 342–356. Elsevier (2001)Google Scholar
  33. 33.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput. 164(2), 234–263 (2001)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Wolper, P.: The tableau method for temporal logic: an overview. Logique Anal. 28(110–111), 119–136 (1985)MathSciNetMATHGoogle Scholar
  36. 36.
    Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998). doi:10.1007/BFb0028736 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of KasselKasselGermany

Personalised recommendations