Space-Efficient Fragments of Higher-Order Fixpoint Logic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10506)

Abstract

Higher-Order Fixpoint Logic (HFL) is a modal specification language whose expressive power reaches far beyond that of Monadic Second-Order Logic, achieved through an incorporation of a typed \(\lambda \)-calculus into the modal \(\mu \)-calculus. Its model checking problem on finite transition systems is decidable, albeit of high complexity, namely k-EXPTIME-complete for formulas that use functions of type order at most \(k > 0\). In this paper we present a fragment with a presumably easier model checking problem. We show that so-called tail-recursive formulas of type order k can be model checked in \((k-1)\)-EXPSPACE, and also give matching lower bounds. This yields generic results for the complexity of bisimulation-invariant non-regular properties, as these can typically be defined in HFL.

References

  1. 1.
    Andersen, H.R.: A polyadic modal \(\mu \)-calculus. Technical Report ID-TR: 1994–195, Dept. of Computer Science, Technical University of Denmark, Copenhagen (1994)Google Scholar
  2. 2.
    Axelsson, R., Lange, M.: Model checking the first-order fragment of higher-order fixpoint logic. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 62–76. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75560-9_7 CrossRefGoogle Scholar
  3. 3.
    Axelsson, R., Lange, M., Somla, R.: The complexity of model checking higher-order fixpoint logic. Logical Meth. Comput. Sci. 3, 1–33 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Emerson, E.A.: Uniform inevitability is tree automaton ineffable. Inf. Process. Lett. 24(2), 77–79 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logic of nonregular programs. J. Comput. Syst. Sci. 26(2), 222–243 (1983)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. AMS 117, 285–306 (1965)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional \(\mu \)-calculus with respect to monadic second order logic. In: CONCUR, pp. 263–277 (1996)Google Scholar
  8. 8.
    Jones, N.D.: The expressive power of higher-order types or, life without CONS. J. Funct. Progm. 11(1), 5–94 (2001)MathSciNetMATHGoogle Scholar
  9. 9.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. TCS 27, 333–354 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lange, M.: Model checking propositional dynamic logic with all extras. J. Appl. Logic 4(1), 39–49 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lange, M.: Temporal logics beyond regularity. Habilitation thesis, University of Munich, BRICS research report RS-07-13 (2007)Google Scholar
  12. 12.
    Lange, M., Lozes, E.: Capturing bisimulation-invariant complexity classes with higher-order modal fixpoint logic. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 90–103. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44602-7_8 Google Scholar
  13. 13.
    Lange, M., Somla, R.: Propositional dynamic logic of context-free programs and fixpoint logic with chop. Inf. Process. Lett. 100(2), 72–75 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Otto, M.: Bisimulation-invariant PTIME and higher-dimensional \(\mu \)-calculus. Theor. Comput. Sci. 224(1–2), 237–265 (1999)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4, 177–192 (1970)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited computations. In: Proceedings of the 6th Annual Symposium on Switching Circuit Theory and Logical Design, pp. 179–190. IEEE (1965)Google Scholar
  17. 17.
    van Emde Boas, P.: The convenience of tilings. In: Sorbi, A. (ed.) Complexity, Logic, and Recursion Theory, vol. 187 of Lecture Notes in Pure and Applied Mathematics, pp. 331–363. Marcel Dekker Inc (1997)Google Scholar
  18. 18.
    Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 512–528. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28644-8_33 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of KasselKasselGermany
  2. 2.LSV, ENS Paris-Saclay, CNRSCachanFrance

Personalised recommendations