Stubborn Sets with Frozen Actions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10506)

Abstract

Most ample, persistent, and stubborn set methods use some special condition for ensuring that the analysis is not terminated prematurely. In the case of stubborn set methods for safety properties, implementation of the condition is usually based on recognizing the terminal strong components of the reduced state space and, if necessary, expanding the stubborn sets used in their roots. In an earlier study it was pointed out that if the system may execute a cycle consisting of only invisible actions and that cycle is concurrent with the rest of the system in a non-obvious way, then the method may be fooled to construct all states of the full parallel composition. This problem is solved in this study by a method that is based on “freezing” the actions in the cycle.

Keywords

Partial-order methods Stubborn sets Safety properties Ignoring problem 

References

  1. 1.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking, p. 314. MIT Press, Cambridge (1999)Google Scholar
  2. 2.
    Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduction. Softw. Tools Technol. Transf. 12(2), 155–170 (2010)CrossRefGoogle Scholar
  3. 3.
    Eve, J., Kurki-Suonio, R.: On computing the transitive closure of a relation. Acta Informatica 8(4), 303–314 (1977)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gabow, H.N.: Path-based depth-first search for strong and biconnected components. Inf. Process. Lett. 74(3–4), 107–114 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Godefroid, P.: Using partial orders to improve automatic verification methods. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185. Springer, Heidelberg (1991). doi:10.1007/BFb0023731 CrossRefGoogle Scholar
  6. 6.
    Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol. 1032. Springer, Heidelberg (1996)MATHGoogle Scholar
  7. 7.
    Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). doi:10.1007/3-540-17906-2_30 CrossRefGoogle Scholar
  8. 8.
    Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993). doi:10.1007/3-540-56922-7_34 CrossRefGoogle Scholar
  9. 9.
    Peled, D.: Partial order reduction: linear and branching temporal logics and process algebras. In: Peled, D.A., Pratt, V.R., Holzmann, G.J. (eds.) Partial Order Methods in Verification: DIMACS Workshop. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 29, pp. 233–257. American Mathematical Society (1997)Google Scholar
  10. 10.
    Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Valmari, A.: Error detection by reduced reachability graph generation. In: Proceedings of the 9th European Workshop on Application and Theory of Petri Nets, pp. 95–122 (1988)Google Scholar
  13. 13.
    Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991). doi:10.1007/3-540-53863-1_36 CrossRefGoogle Scholar
  14. 14.
    Valmari, A.: Stubborn set methods for process algebras. In: Peled, D.A., Pratt, V.R., Holzmann, G.J. (eds.) Partial Order Methods in Verification: DIMACS Workshop. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 29, pp. 213–231. American Mathematical Society (1997)Google Scholar
  15. 15.
    Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). doi:10.1007/3-540-65306-6_21 CrossRefGoogle Scholar
  16. 16.
    Valmari, A.: More stubborn set methods for process algebras. In: Gibson-Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles: Essays Dedicated to Andrew William Roscoe on the Occasion of His 60th Birthday. LNCS, vol. 10160, pp. 246–271. Springer, Cham (2017). doi:10.1007/978-3-319-51046-0_13 CrossRefGoogle Scholar
  17. 17.
    Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Cabac, L., Kristensen, L.M., Rölke, H. (eds.) Proceedings of the International Workshop on Petri Nets and Software Engineering 2016. CEUR Workshop Proceedings, vol. 1591, pp. 213–232 (2016)Google Scholar
  18. 18.
    Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Transactions on Petri Nets and Other Models of Concurrency. LNCS (accepted for publication). An extended version of [17]Google Scholar
  19. 19.
    Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer, Cham (2016). doi:10.1007/978-3-319-32582-8_16 CrossRefGoogle Scholar
  20. 20.
    Valmari, A., Vogler, W.: Fair testing and stubborn sets (submitted for publication). An extended journal version of [19]Google Scholar
  21. 21.
    Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.MathematicsTampere University of TechnologyTampereFinland

Personalised recommendations