Probabilistic Timed Automata with Clock-Dependent Probabilities
Abstract
Probabilistic timed automata are classical timed automata extended with discrete probability distributions over edges. We introduce clock-dependent probabilistic timed automata, a variant of probabilistic timed automata in which transition probabilities can depend linearly on clock values. Clock-dependent probabilistic timed automata allow the modelling of a continuous relationship between time passage and the likelihood of system events. We show that the problem of deciding whether the maximum probability of reaching a certain location is above a threshold is undecidable for clock-dependent probabilistic timed automata. On the other hand, we show that the maximum and minimum probability of reaching a certain location in clock-dependent probabilistic timed automata can be approximated using a region-graph-based approach.
Notes
Acknowledgments
The inspiration for cdPTA arose from a discussion with Patricia Bouyer on the corner-point abstraction. Thanks also to Holger Hermanns, who expressed interest in a cdPTA-like formalism in a talk at Dagstuhl Seminar 14441.
References
- 1.Abate, A., Katoen, J., Lygeros, J., Prandini, M.: Approximate model checking of stochastic hybrid systems. Eur. J. Control 16(6), 624–641 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 2.Akshay, S., Bouyer, P., Krishna, S.N., Manasa, L., Trivedi, A.: Stochastic timed games revisited. In: Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). LIPIcs, vol. 58, pp. 8:1–8:14. Leibniz-Zentrum für Informatik (2016)Google Scholar
- 3.Akshay, S., Bouyer, P., Krishna, S.N., Manasa, L., Trivedi, A.: Stochastic timed games revisited. CoRR, abs/1607.05671 (2016)Google Scholar
- 4.Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 5.Basset, N., Asarin, E.: Thin and thick timed regular languages. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 113–128. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24310-3_9 CrossRefGoogle Scholar
- 6.Bian, G., Abate, A.: On the relationship between bisimulation and trace equivalence in an approximate probabilistic context. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 321–337. Springer, Heidelberg (2017). doi: 10.1007/978-3-662-54458-7_19 CrossRefGoogle Scholar
- 7.Bouyer, P.: On the optimal reachability problem in weighted timed automata and games. In: Proceedings of the 7th Workshop on Non-Classical Models of Automata and Applications (NCMA 2015). books@ocg.at, vol. 318, pp. 11–36. Austrian Computer Society (2015)Google Scholar
- 8.Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed automata. Formal Methods Syst. Des. 32(1), 2–23 (2008)CrossRefMATHGoogle Scholar
- 9.D’Innocenzo, A., Abate, A., Katoen, J.: Robust PCTL model checking. In: Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2012), pp. 275–286. ACM (2012)Google Scholar
- 10.Gregersen, H., Jensen, H.E.: Formal design of reliable real time systems. Master’s thesis, Department of Mathematics and Computer Science, Aalborg University (1995)Google Scholar
- 11.Hahn, E.M.: Model checking stochastic hybrid systems. Ph.D. thesis, Universität des Saarlandes (2013)Google Scholar
- 12.Jurdziński, M., Laroussinie, F., Sproston, J.: Model checking probabilistic timed automata with one or two clocks. Log. Methods Comput. Sci. 4(3), 1–28 (2008)MathSciNetMATHGoogle Scholar
- 13.Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based abstraction-refinement framework for Markov decision processes. Formal Methods Syst. Des. 36(3), 246–280 (2010)CrossRefMATHGoogle Scholar
- 14.Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1976)CrossRefMATHGoogle Scholar
- 15.Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
- 16.Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods Syst. Des. 29, 33–78 (2006)CrossRefMATHGoogle Scholar
- 17.Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoret. Comput. Sci. 286, 101–150 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 18.Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall International, Upper Saddle River (1967)MATHGoogle Scholar
- 19.Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43(2), 164–190 (2013)CrossRefMATHGoogle Scholar
- 20.Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)CrossRefMATHGoogle Scholar
- 21.Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, Massachusetts Institute of Technology (1995)Google Scholar
- 22.Sproston, J.: Probabilistic timed automata with clock-dependent probabilities. CoRR (2017)Google Scholar