Advertisement

The Multiple Dimensions of Mean-Payoff Games

(Extended Abstract)
  • Laurent DoyenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10506)

Abstract

Outline We consider quantitative game models for the design of reactive systems working in resource-constrained environment. The game is played on a finite weighted graph where some resource (e.g., battery) can be consumed or recharged along the edges of the graph.

References

  1. 1.
    Alpern, B., Demers, A.J., Schneider, F.B.: Safety without stuttering. Inform. Process. Lett. 23(4), 177–180 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff conditions. In: Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 333–347. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00596-1_24 CrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Basset, N., Kwiatkowska, M., Topcu, U., Wiltsche, C.: Strategy synthesis for stochastic games with multiple long-run objectives. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 256–271. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_22 Google Scholar
  5. 5.
    Bohy, A., Bruyère, V., Filiot, E., Raskin, J.-F.: Synthesis from LTL specifications with mean-payoff objectives. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 169–184. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36742-7_12 CrossRefGoogle Scholar
  6. 6.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85778-5_4 CrossRefGoogle Scholar
  7. 7.
    Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Markov decision processes with multiple long-run average objectives. Logical Meth. Comput. Sci.10(1:13) (2014)Google Scholar
  8. 8.
    Brenguier, R., Raskin, J.-F.: Pareto curves of multidimensional mean-payoff games. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 251–267. Springer, Cham (2015). doi: 10.1007/978-3-319-21668-3_15 CrossRefGoogle Scholar
  9. 9.
    Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-payoff games. Formal Meth. Syst. Des. 38(2), 97–118 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chakrabarti, A., Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45212-6_9 CrossRefGoogle Scholar
  12. 12.
    Chatterjee, K.: Markov decision processes with multiple long-run average objectives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 473–484. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77050-3_39 CrossRefGoogle Scholar
  13. 13.
    Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14162-1_50 CrossRefGoogle Scholar
  14. 14.
    Chatterjee, K., Doyen, L.: Perfect-information stochastic games with generalized mean-payoff objectives. In: Proceedings of LICS: Logic in Computer Science, pp. 247–256. ACM (2016)Google Scholar
  15. 15.
    Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15375-4_19 CrossRefGoogle Scholar
  16. 16.
    Chatterjee, K., Doyen, L., Gimbert, H., Oualhadj, Y.: Perfect-information stochastic mean-payoff parity games. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 210–225. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54830-7_14 CrossRefGoogle Scholar
  17. 17.
    Chatterjee, K., Doyen, L., Randour, M., Raskin, J.-F.: Looking at mean-payoff and total-payoff through windows. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 118–132. Springer, Cham (2013). doi: 10.1007/978-3-319-02444-8_10 CrossRefGoogle Scholar
  18. 18.
    Chatterjee, K., Henzinger, T.A.: A survey of stochastic \(\omega \)-regular games. J. Comput. Syst. Sci. 78(2), 394–413 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In: Proceedings of LICS: Logic in Computer Science, pp. 178–187. IEEE Computer Society (2005)Google Scholar
  20. 20.
    Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-dimensional quantitative objectives. Acta Inf. 51, 129–163 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chatterjee, K., Velner, Y.: Hyperplane separation technique for multidimensional mean-payoff games. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 500–515. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40184-8_35 CrossRefGoogle Scholar
  22. 22.
    Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15205-4_22 CrossRefGoogle Scholar
  23. 23.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8(2), 109–113 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proceedings of FOCS: Foundations of Computer Science, pp. 368–377. IEEE (1991)Google Scholar
  25. 25.
    Gimbert, H., Zielonka, W.: When can you play positionally? In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 686–697. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28629-5_53 CrossRefGoogle Scholar
  26. 26.
    Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg (2002). doi: 10.1007/3-540-36387-4_2 CrossRefGoogle Scholar
  27. 27.
    Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of STOC: Symposium on Theory of Computing, pp. 60–65. ACM Press (1982)Google Scholar
  28. 28.
    Hunter, P., Pérez, G.A., Raskin, J.-F.: Mean-payoff games with partial-observation. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 163–175. Springer, Cham (2014). doi: 10.1007/978-3-319-11439-2_13 Google Scholar
  29. 29.
    Hunter, P., Raskin, J.-F.: Quantitative games with interval objectives. In: Proceedings of FSTTCS: Foundation of Software Technology and Theoretical Computer Science, vol. 29 of LIPIcs, pp. 365–377. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  30. 30.
    Jurdziński, M.: Deciding the winner in parity games is in UP \(\cap \) co-UP. Inf. Process. Lett. 68(3), 119–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Jurdziński, M., Lazić, R., Schmitz, S.: Fixed-dimensional energy games are in pseudo-polynomial time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 260–272. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47666-6_21 CrossRefGoogle Scholar
  32. 32.
    Karzanov, A.V., Lebedev, V.N.: Cyclical games with prohibitions. Math. Program. 60, 277–293 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kelmendi, E.: Two-Player Stochastic Games with Perfect and Zero Information. Ph.D. thesis, Université de Bordeaux (2016)Google Scholar
  34. 34.
    Kopczyński, E.: Half-positional determinacy of infinite games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 336–347. Springer, Heidelberg (2006). doi: 10.1007/11787006_29 CrossRefGoogle Scholar
  35. 35.
    Pérez, G.A.: The fixed initial credit problem for partial-observation energy games is Ack-complete. Inform. Process. Lett. 118, 91–99 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Pnueli, A., Rosner R.: On the synthesis of a reactive module. In: Proceedings of POPL, pp. 179–190. ACM Press (1989)Google Scholar
  37. 37.
    Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American Mathematical Society, Boston (1972)CrossRefzbMATHGoogle Scholar
  38. 38.
    Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proc. IEEE 77, 81–98 (1989)CrossRefzbMATHGoogle Scholar
  39. 39.
    Raskin, J.-F.: A tutorial on mean-payoff and energy games. Dependable Softw. Syst. Eng. 45, 179–201 (2016)Google Scholar
  40. 40.
    Velner, Y.: Finite-memory strategy synthesis for robust multidimensional mean-payoff objectives. In Proceedings of CSL-LICS: Joint Meeting of Computer Science Logic (CSL) and Logic in Computer Science (LICS), pp. 79:1–79:10. ACM (2014)Google Scholar
  41. 41.
    Velner, Y.: Robust multidimensional mean-payoff games are undecidable. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 312–327. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46678-0_20 CrossRefGoogle Scholar
  42. 42.
    Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin, J.-F.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput. 241, 177–196 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LSV, ENS Paris-Saclay and CNRSCachanFrance

Personalised recommendations