The Swarm-Like Update Scheme for Opinion Formation

  • Tomasz M. Gwizdałła
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)


The question, how to describe the individual’s position concerning some particular issue and especially the factors influencing its change is the topis of different studies for tens of years. The dynamics of opinions change is usually adopted from ideas related to the physical description of magnetism including especially some form of interaction between spins. In our paper we are going to propose the scheme based on formulation of popular global optimization mechanism - the Particle Swarm Optimization. We consider our proposition as some form of comeback to the roots, since PSO is based on the analysis of behavior of flocks of animals. We present the background of the model and some comparisons with earlier studied approaches.


  1. 1.
    French Jr., F.R.: A formal theory of social power. Psychol. Rev. 63, 181–194 (1956)CrossRefGoogle Scholar
  2. 2.
    Lewin, K.: Field Theory in Social Science: Selected Theoretical Papers. Harper & Brothers, New York (1951)Google Scholar
  3. 3.
    Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60, 581–588 (1973)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294–307 (1963)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B 25, 403–406 (2002)Google Scholar
  6. 6.
    Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11, 1157 (2000)CrossRefGoogle Scholar
  7. 7.
    Stauffer, D., Sousa, A.O., de Oliveira, S.: Generalization to square lattice of Sznajd sociophysics. Int. J. Mod. Phys. C 11, 1239 (2000)CrossRefGoogle Scholar
  8. 8.
    Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Artif. Soc. Soc. Simul. 5, 1–24 (2002)Google Scholar
  9. 9.
    Gwizdałła, T.M.: The influence of cellular automaton topology on the opinion formation. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 179–190. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_17CrossRefGoogle Scholar
  10. 10.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Grefenstette, J.J. (ed.) Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948. IEEE Service Center, Piscataway (1995)Google Scholar
  11. 11.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)Google Scholar
  12. 12.
    Rameshkumar, K., Suresh, R.K., Mohanasundaram, K.M.: Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makespan. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 572–581. Springer, Heidelberg (2005). doi: 10.1007/11539902_70CrossRefGoogle Scholar
  13. 13.
    Lee, S., Soak, S., Oh, S., Pedrycz, W., Jeon, M.: Modified binary particle swarm optimization. Prog. Nat. Sci. 18, 1161–1166 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khanesar, M.A., Teshnehlab, M., Shoorehdeli, M.A.: A novel binary particle swarm optimization. In: 2007 Mediterranean Conference on Control Automation, pp. 1–6 (2007)Google Scholar
  15. 15.
    Bansal, J.C., Deep, K.: A modified binary particle swarm optimization for knapsack problems. Appl. Math. Comput. 218, 11042–11061 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Beheshti, Z., Shamsuddin, S.M., Hasan, S.: Memetic binary particle swarm optimization for discrete optimization problems. Inf. Sci. 299, 58–84 (2015)CrossRefGoogle Scholar
  17. 17.
    Liu, J., Mei, Y., Li, X.: An analysis of the inertia weight parameter for binary particle swarm optimization. IEEE Trans. Evol. Comput. 20, 666–681 (2016)CrossRefGoogle Scholar
  18. 18.
    Gunasundari, S., Janakiraman, S., Meenambal, S.: Velocity bounded boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis. Expert Syst. Appl. 56, 28–47 (2016)CrossRefGoogle Scholar
  19. 19.
    Gwizdałła, T.M.: Different versions of particle swarm optimization for magnetic problems. In: Proceedings of the 13th Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 5–6. ACM, New York (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Solid State PhysicsUniversity of ŁódźŁódźPoland

Personalised recommendations