Advertisement

Shape Classification Using Combined Features

  • Laksono Kurnianggoro
  • Wahyono
  • Alexander Filonenko
  • Kang-Hyun Jo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

Shape classification is an active research field due to its usefulness. In this work, hand crafted shape descriptors are combined with features extracted using convolutional neural network to do the classifi cation task. Extensive experiments were performed on public data sets to reveal the performance of the proposed method compared to the other state of the arts shape classification methods.

Keywords

Shape classification Machine learning Neural network 

Notes

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (2016R1D1A1A02937579).

References

  1. 1.
    Atabay, H.A.: Binary shape classification using convolutional neural networks. IIOAB J. 7(5), 332–336 (2016)Google Scholar
  2. 2.
    Atabay, H.A.: A convolutional neural network with a new architecture applied on leaf classification. IIOAB J. 7(5), 226–331 (2016)Google Scholar
  3. 3.
    Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for shape classification. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 360–367. IEEE (2009)Google Scholar
  4. 4.
    Beghin, T., Cope, J.S., Remagnino, P., Barman, S.: Shape and texture based plant leaf classification. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010 Part II. LNCS, vol. 6475, pp. 345–353. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17691-3_32CrossRefGoogle Scholar
  5. 5.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  6. 6.
    Daliri, M.R., Torre, V.: Robust symbolic representation for shape recognition and retrieval. Pattern Recogn. 41(5), 1782–1798 (2008)CrossRefGoogle Scholar
  7. 7.
    Daliri, M.R., Torre, V.: Shape recognition based on kernel-edit distance. Comput. Vis. Image Underst. 114(10), 1097–1103 (2010)CrossRefGoogle Scholar
  8. 8.
    Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recogn. 26(1), 167–174 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hu, D., Huang, W., Yang, J., Shang, L., Zhu, Z.: Shape matching and object recognition using common base triangle area. IET Comput. Vis. 9(5), 769–778 (2015)CrossRefGoogle Scholar
  10. 10.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)CrossRefGoogle Scholar
  11. 11.
    Hu, R.X., Jia, W., Zhao, Y., Gui, J.: Perceptually motivated morphological strategies for shape retrieval. Pattern Recogn. 45(9), 3222–3230 (2012)CrossRefGoogle Scholar
  12. 12.
    Kejia, W., Honggang, Z., Lunshao, C., Ping, Z., et al.: A comparative study of moment-based shape descriptors for product image retrieval. In: 2011 International Conference on Image Analysis and Signal Processing (IASP), pp. 355–359. IEEE (2011)Google Scholar
  13. 13.
    Latecki, L.J., Lakamper, R., Eckhardt, T.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 424–429. IEEE (2000)Google Scholar
  14. 14.
    Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–409. IEEE (2003)Google Scholar
  15. 15.
    Lin, C., Pun, C.M.: Shape classification using hybrid regional and global descriptor. Int. J. Mach. Learn. Comput. 4(1), 68 (2014)CrossRefGoogle Scholar
  16. 16.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2) 286–299 (2007)CrossRefGoogle Scholar
  17. 17.
    Mallah, C., Cope, J., Orwell, J.: Plant leaf classification using probabilistic integration of shape, texture and margin features. Signal Process. Pattern Recogn. Appl. 5, 1 (2013)Google Scholar
  18. 18.
    Nguyen, T.T.N., Le, T.-L., Vu, H., Nguyen, H.-H., Hoang, V.-S.: A combination of deep learning and hand-designed feature for plant identification based on leaf and flower images. In: Król, D., Nguyen, N.T., Shirai, K. (eds.) ACIIDS 2017. SCI, vol. 710, pp. 223–233. Springer, Cham (2017). doi: 10.1007/978-3-319-56660-3_20CrossRefGoogle Scholar
  19. 19.
    Pavlidis, T.: A review of algorithms for shape analysis. Comput. Graph. Image Process. 7(2), 243–258 (1978)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sebastian, T.B., Kimia, B.B.: Curves vs. skeletons in object recognition. Signal Process. 85(2), 247–263 (2005)CrossRefGoogle Scholar
  21. 21.
    Söderkvist, O.: Computer vision classification of leaves from swedish trees (2001)Google Scholar
  22. 22.
    Teague, M.R.: Image analysis via the general theory of moments. JOSA 70(8), 920–930 (1980)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Terrades, O.R., Tabbone, S., Valveny, E.: A review of shape descriptors for document analysis. In: Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, vol. 1, pp. 227–231. IEEE (2007)Google Scholar
  24. 24.
    Wahyono, Kurnianggoro, L., Yang, Y., Jo, K.H.: A similarity-based approach for shape classification using region decomposition. In: Huang, D.S., Jo, K.H., et al. (eds.) ICIC 2016. Lecture Notes in Computer Science, pp. 279–289. Springer, Cham (2016)CrossRefGoogle Scholar
  25. 25.
    Wang, J., Bai, X., You, X., Liu, W., Latecki, L.J.: Shape matching and classification using height functions. Pattern Recogn. Lett. 33(2), 134–143 (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of contour fragments for robust shape classification. Pattern Recogn. 47(6), 2116–2125 (2014)CrossRefGoogle Scholar
  27. 27.
    Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques (2008)Google Scholar
  28. 28.
    Yasseen, Z., Verroust-Blondet, A., Nasri, A.: Shape matching by part alignment using extended chordal axis transform. Pattern Recogn. 57, 115–135 (2016)CrossRefGoogle Scholar
  29. 29.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37(1), 1–19 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Laksono Kurnianggoro
    • 1
  • Wahyono
    • 1
  • Alexander Filonenko
    • 1
  • Kang-Hyun Jo
    • 1
  1. 1.The Graduate School of Electrical EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations