Evaluation of Gama Analysis Results Significance Within Verification of Radiation IMRT Plans in Radiotherapy

  • Jan Kubicek
  • Iveta Bryjova
  • Kamila Faltynova
  • Marek Penhaker
  • Martin Augustynek
  • Petra Maresova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)


The Gamma analysis is a method, which currently represents a standard for results verification of patient IMRT (Intensity modulated Radiation Therapy) plans. It is just a numerical concept, which within standard usage contains neither relevant clinical information nor geometrical parameters of a given area. The main aim of the paper is an application development, which would be able to assess and predict of the Gamma analysis significance from the portal dosimetry on the base of the information from the planning system about irradiated volume and critical organs from the BEV (Beam’s Eye View) projection. Consequently, a frequency of unsatisfactory results in matrixes of Gamma indexes will be tracked (Gamma index is greater than 1). The last part of the analysis deals with an investigation of a geometrical coherence of these points coordinates with particular pairs of laminations of multilevel collimator and their position against BEV projection.


Radiotherapy IMRT Dosimetry Gamma analysis 



The work and the contributions were supported by the project SV4506631/2101 ‘Biomedicínské inženýrské systémy XII’. This study was supported by the research project The Czech Science Foundation (GACR) No. 17-03037S, Investment evaluation of medical device development.


  1. 1.
    Cooperberg, M.R.: Re: 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. Eur. Urol. 71(3), 492–493 (2017)CrossRefGoogle Scholar
  2. 2.
    Miksys, N., Vigneault, E., Martin, A.-G., Beaulieu, L., Thomson, R.M.: Large-scale retrospective Monte Carlo dosimetric study for permanent implant prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 97(3), 606–615 (2017)CrossRefGoogle Scholar
  3. 3.
    Maspero, M., Seevinck, P.R., Schubert, G., Hoesl, M.A.U., Van Asselen, B., Viergever, M.A., Lagendijk, J.J.W., Meijer, G.J., Van Den Berg, C.A.T.: Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT. Phys. Med. Biol. 62(3), 948–965 (2017)CrossRefGoogle Scholar
  4. 4.
    Kim, K.H., Lee, S., Shim, J.B., Chang, K.H., Cao, Y., Choi, S.W., Jeon, S.H., Yang, D.S., Yoon, W.S., Park, Y.J., Kim, C.Y.: Predictive modelling analysis for development of a radiotherapy decision support system in prostate cancer: a preliminary study. J. Radiother. Pract. 16, 161–170 (2017)CrossRefGoogle Scholar
  5. 5.
    McIntosh, C., Purdie, T.G.: Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning. Phys. Med. Biol. 62(2), 415–431 (2017)CrossRefGoogle Scholar
  6. 6.
    Haehnle, J., Süss, P., Landry, G., Teichert, K., Hille, L., Hofmaier, J., Nowak, D., Kamp, F., Reiner, M., Thieke, C., Ganswindt, U., Belka, C., Parodi, K., Küfer, K.-H., Kurz, C.: A novel method for interactive multi-objective dose-guided patient positioning. Phys. Med. Biol. 62(1), 165–185 (2017)CrossRefGoogle Scholar
  7. 7.
    Yildirim, B.A., Onal, C., Dolek, Y.: Is it essential to use fiducial markers during cone-beam CT-based radiotherapy for prostate cancer patients? Jpn. J. Radiol. 35(1), 3–9 (2017)CrossRefGoogle Scholar
  8. 8.
    Ingrosso, G., Carosi, A., di Cristino, D., Ponti, E., Lancia, A., Murgia, A., Bruni, C., Morelli, P., Pietrasanta, F., Santoni, R.: Volumetric image-guided highly conformal radiotherapy of the prostate bed: toxicity analysis. Rep. Pract. Oncol. Radiother. 22(1), 64–70 (2017)CrossRefGoogle Scholar
  9. 9.
    Kubicek, J., Penhaker, M.: Guidelines for modelling BED in simultaneous radiotherapy. IFMBE Proc. 43, 271–274 (2014)CrossRefGoogle Scholar
  10. 10.
    Kubicek, J., Penhaker, M., Feltl, D., Cvek, J.: Guidelines for modelling BED in simultaneous radiotherapy of two volumes: tpv1 and tpv2. In: Proceedings of SAMI 2013 - IEEE 11th International Symposium on Applied Machine Intelligence and Informatics, pp. 131–135 (2013). Article no. 6480960Google Scholar
  11. 11.
    Penhaker, M., Novakova, M., Knybel, J., Kubicek, J., Grepl, J., Kasik, V., Zapletal, T.: Breathing movement analysis for adjustment of radiotherapy planning. Stud. Comput. Intell. 710, 105–116 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jan Kubicek
    • 1
  • Iveta Bryjova
    • 1
  • Kamila Faltynova
    • 1
  • Marek Penhaker
    • 1
  • Martin Augustynek
    • 1
  • Petra Maresova
    • 2
  1. 1.FEECSVSB–Technical University of OstravaPoruba, OstravaCzech Republic
  2. 2.Faculty of Informatics and ManagementUniversity of Hradec KraloveHradec KrálovéCzech Republic

Personalised recommendations